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Abstract

Algorithm animation can provide significant insight into the execution of serial and parallel

programs. In particular, research into its use in program debugging, optimization, and pedagogical

observation has been extensive. Systems such as Paragraph, Pablo, and the Air Force Institute

of Technology's (AFIT) Algorithm Animation Research Facility (AAARF) represent significant

animation environments for parallel systems. Most systems provide generic animations based on

message passing activity which can be further enhanced by using application specific displays. The

goal of this investigation is to: 1) create both general and application specific displays that support

visualization of parallel algorithms, and 2) consider appropriate visualization system enhancements

for massively parallel architectures. Thus, this research focuses in pai & on developing animation

support for current AFIT parallel processing research projects. Analysis, design, and implementa-

tion of application specific displays for discrete event simulation, mission routing, and evolutionary

algorithms are based on abstract representations of parallel algorithm behavior. The effort also

builds extensions to the AAARF system and examines direction for further research. An inno-

vative adaptable application-specific animation construction environment has been designed and

implemented. The advantages of this revised type of animation environment are clearly demon-

strated with its successful application to genetic algorithm visualization. The environment provides

a set of composible graphics objects and a flexible event mapping and transformation system that

allows development of arbitrary animation formats. The system also reduces operational complex-

ity via a simplified event format. The ability to compose arbitrary animations, without coding, is

currently not integrated with other similar systems. The resulting visualization system is inherently

portable between architectures, easily extensible to meet specific user animation requirements, and

successfully deals with scalability problems associated with massively parallel processing systems.

xiv



EFFECTIVE PARALLEL ALGORITHM ANIMATION

I. Effective Parallel Algorithm Animation

1.1 Introduction

Parallel processing provides an opportunity to gain virtually unlimited computational p,

by decomposing a task into subtasks that can be executed on a number of processing elements.

The scalability of parallel processing systems currently provides the only method of achieving the

computational power required to solve a vast array of complex problems. From a system per-

spective, scalability is the inherent effectiveness of adding additional processing elements to the

computational platform. If a system is scalable, the additional processing elements are capable of

reducing the total program execution time for scalable algorithm implementation. From an algo-

rithm perspective, a scalable algorithm is one that is capable of effectively utilizing the additional

processing elements.

To utilize the computational power of a parallel processing system, a problem must be de-

composed to make use of the available processors. If this decomposition is not effective, the parallel

implementation may, in fact, perform worse than the original serial program. Current design tech-

niques provide some guidance for decomposing a given problem. However, the complex execution

patterns of many parallel programs lead to the need to analyze their actual execution (29, 62, 28).

This empirical approach is often necessary due to the analysis and computation time required to

determine a theoretical decomposition and task schedule, or simply the non-determinism inherent

in the underlying algorithm. In most realistic applications, task scheduling and decomposition

requires non-polynomial time complexity algorithms (22). While theoreticaý ',thods exist (10, 46)

current techniques provide only limited modeling of the target system and usually produce subop-

timal solutions. As a result the task schedules and decompositions produced using these techniques
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often lead to undesired real-world behavior. If the behavior of the required algorithm is non-

deterministic, theoretical approaches at best provide only approximate solutions. These difficulties

lead to the lack of general methods for predicting application or system behavior on massively

parallel systems (47, 10). In addition, there are few tools that allow for post-execution analysis.

Program animation is the process of graphically representing the state changes which occur

during the execution of the control structure (algorithm) of the computer program. When the

animations are extended to include high level algorithm events (84:41), the logical question of why

a program behaved in a particular manner can be addressed.

Algorithm animation is vital in the development of new parallel software and the optimization

of existing software. Without its use during execution analysis, real-world algorithm behavior is

often hidden from the user. Moreover it is an effective aid in teaching algorithm design and for

understanding the execution behavior of existing algorithms.

1.2 Background

AFIT has been extensively involved in research into algorithm animation. Research by Fife

(16), Williams (84), Lack (43), and Wright (86) produced the current AFIT Algorithm Animation

Research Facility (AAARF). This system is a general purpose visualization tool for animation

of serial and parallel algorithms. AAARF has been used to examine the viability of real time

data collection , low level system visualizations, and high level algorithm displays (84) for parallel

algorithm observation.

AAARF was designed and implemented as an animation system for serial processes by Fife

(16) in 1988-1989. It was extended by Williams (84) in 1989-1991 to include animations for parallel

performance analysis and parallel algorithms on the Intel iPSC/2 Hypercube. Lack (43) further

extended AAARF during 1990-1991 by adding an expert system advisor and additional iPSC/2
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animations. The latest revision by Wright (86) in 1991-1992, ported the system from the SunView

(86:49) programming environment to Xview (86:41).

Previous AAARF research and development has produced a functional tool that provides the

basis from which to examine algorithm animation. A number of sample applications have been

instrumented and a limited number of application specific displays developed. The applications

instrumented include : A* based set covering program (84:5-2), a collection of parallel sorting rou-

tines (84:A-1), and a ring communication program (86:B-1). The two application specific displays

developed for parallel program support include a bar graph view for sorting routines and a tree

building animation for search algorithms (84:A-1).

1.3 Outline of Research Problems

This research investigates how to enhance and extend the current algorithm animations capa-

bilities of the AAARF system, the aim being to directly support other AFIT research projects with

informative animations. Currently algorithm research is significantly restricted by the availability

of tools for execution analysis. In particular, current parallel execution analysis tools:

"* Lack the animation scalability necessary to meet the demands of massively parallel systems.

"* Lack integration of algorithm data animations.

"* Impose significant perturbations on the programs executions.

"• Produce voluminous trace data that limits the period of observation.

The additional animation support is directed towards algorithm understanding and analysis

capabilities, while reducing the limitations outlined above. With increasing usage of massively

parallel processing systems, visualization support must provide more than just informative ani-

mations. For additional animations to be effective they must be scalable, extensible, portable,

and most importantly reveal aspects of the program's execution previously not visible to the user.
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The system must be scalable to allow depiction of applications executing on massively parallel

computer systems; and extensible to allow creation of new depictions, for execution behavior not

previously encountered. The displays must promote portability to allow comparison of execution

results on various parallel systems. Most importantly, the displays must provide information about

the algorithm under examination that is of benefit to the user. This benefit may be providing

educational understanding of execution behavior, or assistance in development and enhancement

of the algorithm.

The central problem addressed by this research is the development of visualization tools that

meet these requirements.

1.4 Objectives

The problems outlined in the previous section require that a number of current animation

research questions must be investigated.

Providing support for current AFIT research projects demands that specific display classes be

examined for each application area. The generic data provided by the standard AAARF displays is

inadequate for in-depth algorithm research, which requires greater knowledge of program execution

parameters. For example, current generic animations provide no information relating to program

data structures and control flow within a processing node. The first objective is to investigate

the applicability and capabilities of this animation approach. Opportunities also exist for the

enhancement of the generic message based animation currently provided by AAARF. The second

objective is thus, to examine additional generic displays and their applicability to enhancement of

specific application animation objectives.

AFIT's parallel research activity is now focusing on the Intel iPSC/860 for development work

and AAARF must be capable of supporting this platform. To ensure that the animation produced

provides accurate data, we must examine and quantify the effects of execution tracing. The more
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advanced Intel Paragon (39) system poses additional animation requirements. This research also

aims to provide clear direction for further AAARF development that supports the Paragon system.

The current AAARF system poorly addresses the problems of scalability and portability.

AAARF is currently designed around the concept of a fixed architecture with a limited number

of processing nodes (5 16). To address these problems the development of animations are system

independent, in terms of the number of processing nodes and interconnection arrangements which

are required. To address portability requirements, these animation displays must also process event

traces that can be generated on any parallel system.

Extensibility is a major objective of this research. The requirement for users to development

software when generating application specific displays must be eliminated. It is, for example,

unacceptable to expect the user of the animation tool to develop Xwindow's graphics code to

produce the required animation formats.

Thus, the basic objective of providing animation support for parallel algorithm research can

be divided into sub-goals as follows.

"* The development of application specific animations that support the major AFIT parallel

research projects:

- Parallel Discrete Event Simulation (PDES) (5).

- Parallel Genetic Algorithms (52, 6, 15, 73).

- Multi-Criteria Mission Routing (14).

"• The instrumentation and animation of other algorithm types not currently represented in the

AAARF program library.

"* Porting of the data collection software (PRASE (16)) to iPSC/860. This objective satisfies

the requirement to support other processing platforms used by AFIT researchers.
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"* Investigation of animation overhead and enhancement of the data collection facility. This

activity provides information required to appropriately apply algorithm animation.

"* Development of animation formats that are inherently scalable and portable.

"* Development of techniques for generation of these displays that do not require coding by the

user. Achieving this objective reduces/eliminates the impact of problems inherent in current

animation systems.

The fulfillment of these objectives provide enhancements to the AAARF animation system

that resolve the problems discussed in Section 1.3.

1.5 Summary of Current Knowledge in Parallel Algorithm Visualization

The field of parallel program visualization has developed over the last decade to a point where

complete systems are available for use during the software development cycle (Paragraph (29), Pablo

(62) AAARF (84), and AIMS (57)). The Pablo system developed by Reed (62) contains some of

the most advanced design features with self defining event tracing and user configurable display

formats. While the tools currently available provide significant capabilities, further improvement

is required before these systems can be utilized on more complex programs. The current problem

areas of parallel algorithm visualization can be divided into three main research topics:

"* Reduction of trace data volume, minimizing tracing overhead, and trace format standardiza-

tion.

"* Development of scalable animations of process/machine level events that are processing sys-

tem independent.

"* Development of scalable abstract animations of high level algorithm events.

These are discussed in more detail in Chapter II.
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1.5.1 Reduction of Trace Data Volume, and Instrumentation Overhead and Trace Format

Standardization. Development is yet to make significant inroads into the problem of trace data

volume. While a number of techniques have been tried, none have achieved an order of magnitude

reduction in the amount of trace data required. Current research includes the use of trace predicates

that evaluate the data as it is collected (17). This scheme discards information that is not required

for a particular animation sequence. The use of real time data collection and analysis has also

been examined (84). To be truly useful, the data collection system must also limit its effect on the

algorithm under examination (artifact). To this end, some preliminary research into quantifying

these effects has been reported (71, 51).

Only recently have efforts been made to produce a standardized trace data format (12, 62).

While trace standardization plays an important part in the development of animation systems,

standardization has currently failed to gain wide acceptance. This is mainly a result of the con-

tinuing effort to reduce the trace data volume and provide event formats for specific processing

platforms. The most promising activity in this area is the development of self defining trace format

(62:51). This system use a meta-file format that can be interpreted from the event descriptions

provided in the trace data. This system is likely to develop as a standard since it has now been

incorporated into the OSF operating system on the Intel Paragon (39).

1.5.2 Animation of Process/Machine Level Events. Process level animations are the

most widely studied implementations of program animation. Currently a number of systems exist

(49, 29, 60. 3, 24, 62) that can produce a variety of animations. These systems have been extensively

utilized in analysis of actual application programs (19, 28, 62). Many current animation systems

are effectively limited to displaying up to 512 processing elements. Systems that provide animation

support for larger numbers of nodes, Pablo (62) for example, utilize equivalence classes to allow

mapping of processor activity to a reduced number of display objects. The equivalence classes result

from the regularity inherent in many parallel algorithm implementations. In these situations, groups
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of processors execute similar/identical code segments and thus classes of processor activity can be

defined by the user. Research continues to examine new display formats that can cope with massive

parallel computer systems containing thousands of processing elements (62. 67).

1.5.3 Animation of High Level Parallel Algorithm Events. High level algorithm animation

has been applied in various forms to serial processing systems (2, 16). Only recently have these

techniques been applied to parallel programs. A number of systems include algorithm animation

capabilities, for example Paragraph (29), VISTA (67), Pablo (62) , and AAARF (84). Currently

systems such as VISTA, Paragraph, AIMS (57) and others focus on generation of specific animations

for different algorithm classes. The Pablo (62) research extends this principle by providing a

development environment for users to create particular instances of an animation class.

In this research we examine both the low and high level animations and implement a number

of new animations in both areas which have been incorporated into the AAARF animation system.

From this research, the characteristics of future parallel algorithm animation systems are defined.

The aim of this activity is to initiate the development of a new generation of the AAARF system.

1.6 Assumptions

The main assumption made in this research is that all work undertaken is based on the current

implementation of AAARF (86). While other systems are available, AAARF has the advantage

of already being integrated into a number of AFIT research projects. Alternative systems are

discussed in Chapter II. Currently, AAARF is primarily used as an analysis and debugging tool

for programs developed by AFIT. It is assumed that the local use of the system remains AAARF's

primary focus.

8



1.7 Scope

The scope of this research is confined to the list of tasks given in the objective. Within these

bounds, correction of existing software bugs and the establishment of version control was under-

taken. The animations focus exclusively on programs implemented on message passing computer

architectures. Different algorithms are instrumented to test the results of developed techniques,

but algorithm research is not part of this study. This research results in additions to the current

AAARF system.

1.8 Overview of Research Activity

To achieve these research objectives a number of developmental and experimental activities

were undertaken.

Extensive experimentation with the current AAARF animation, and other animation research

tools, Paragraph (29) and Pablo (62), lead to enhancement of the generic AAARF animations. In

particular Chapter III investigates additional run-time displays. These displays emphasize aspects

of the program's performance not previously depicted by AAARF. Based on the application of these

animations to a range of programs which are listed in Section 3.2, a new post analysis tool was

developed. This interactive tool provides post execution analysis data in a graphical format that

complements the run-time depictions. The development and implementation of this tool is discussed

in Chapter VII. This work provided the foundation for the development of new animations that

directly support other AFIT research projects.

Experimentation with application specific displays for different algorithm classes is presented

in Chapters IV & V . In these chapters animation support for mission routing (14) and parallel

discrete event simulation (5, 83) is discussed. The animations developed to support these research

areas represent the first such attempts to provide animations for these algorithm classes. In partic-

ular, the animations for parallel discrete event simulation, show that useful algorithm animations
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Figure 1. Thesis Outline

can be developed for programs that exhibit high degrees of non-determinism. These animations

were developed using the existing AAARF code basef" animation construction techniques.

To meet our objective of providing extensible animation formats that are inherently scalable

and portable, a new direction was taken for the AAARF system. A detailed analysis of evenL trac-

ing and animation requirements (see Chapters VII & VIII) lead to specification of a new animation

environment. From this specification, an animation generation environment was developed. This

environment allows the construction of arbitrary animations without coding. Thi' resultant anima-

tions can be developed independently of the number of processing nodes and system architecture.

Within this framework the equivalence classes, often present in parallel program behavior, can be

used to produce displays capable of scaling to massively parallel systems. The adaptive display

environment is discussed in Chapter IX.

To demonstrate the advantages of the adaptive animation environment, it was utilized to

generate animation support for parallel genetic algorithm research, discussed in Section X. The

displays generated were flexible and easily tailored to satisfy specific user analysis criteria. User de-
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finable display format files reduce display generation times to less than two hours, where previously

30 to 40 hours could be expected for displays of equal complexity. These times are based on expe-

rience gained during this research. The resultant displays can be developed independently of the

number of nodes, trace event format, and system architecture. This final experimentation demon-

strated that the adaptive animation environment truly met our goals of scalability, extensibility,

and portability.

1.9 Summary

Algorithm animation provides significant insight into the execution of parallel programs.

While the use of generic animations can provide useful information, this can be further enhanced

by using application specific displays. This investigation developed animations that are scalable,

extensible, portable, and directly assist in analysis, via animation, of current AFIT parallel research

projects. Figure 1 provides a graphical outline of the remainder -- this report, and shows the focus

of each chapter. The next chapter contains the requirements analysis for animation systems and a

review of current program visualization and parallel instrumentation packages.
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II. Parallel Algorithm Animation: Summary of Requirements, Design, and

Implementation Issues

2.1 Introduction

The field of parallel program visualization has developed over the last decade to a point where

extensive systems can be used during the software development cycle. The majority of visualization

systems typically provide various time-based displays of inter-processor communications, event

sequences, and processor activity. The inter-processor communication events represent the sharing

of data or events between processors. Event sequences represent the order in which particular

instructions, or operations, were executed on different processing nodes.

Communication between processors is vital to the analysis of program execution, since it rep-

resent pure overhead and results in under utilization of processing capacity. While communication

cannot, in general, be eliminated it can be minimized through program design. Since processing

nodes in many parallel systems operate asynchronously, global execution constraints must be en-

forced by explicit synchronization. The visualization of event sequences for different nodes allows

this type of analysis.

Current research in parallel algorithm animation is focused in two critical areas: visualiza-

tion/animation techniques for massively parallel machines, and development of an execution trace

standard. The need for animations suitable for massive numbers of processing nodes is driven by

the ever increasing dimension of parallel computing systems, required to solve computationally

intensive applications. The display size of current workstations restricts the number of processors

that can be depicted in any detail and thus more scalable depictions are sought. Trace standardiza-

tion is important to allow portability of animation systems between computational platforms. This

is vital and allows examination of programs when executing on different computer architectures.
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The following sections examine the status of the major research efforts in the area of parallel

algorithm visualization. In particular, currently available systems are discussed along with other

relevant research papers.

2.2 Algorithm Animation Systems Composition

An algorithm animation system consists of a data collection/instrumentation component and

a set of graphical displays that can be used to analyze this data. In addition to these fundamental

components, the methods used to connect the instrumentation system and the graphical displays

further defines the system. A typical implementation is shown in Figure 2. The analysis focuses on

a user application program executing on a parallel computer system. As the application executes,

event markers inserted into the program write trace data to the instrumentation system. The events

can indicate information such as message transmission between nodes, function calls, program state,

or other run-time program data. The instrumentation system gathers the events from different

processing nodes in the system and can either send them directly to the display system, or write

them to a storage file. The instrumentation system in many cases also provides global time ordering

of events. The display system uses the ordered event trace to generate animation displays. The

animation displays provide a visualization of one, or a number of program execution parameters. An

example would be a utilization display indicating the number of active processors during different

phases of the execution. Most systems allow a number of different display types to be active at one.

The animation system usually allows for user input parameters such as time scale, the number of

processing nodes, and trace file name.

The following sections discuss current issues relating to instrumentation systems and the

visualization displays. Recent research has focused on improvements to data collection techniques,

various graphical display formats, and the use of audio signals to complement the information

provided by the visualizations (18).
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2.3 Instrumentation Systems Issues

The execution of the program under examination is recorded as a series of event records. The

records contain information relating to the event type, the time it occurred, and additional data

structures of interest to the user. The recording of these events is performed by the instrumen-

tation system. The instrumentation system must ensure that a relative global time is maintained

between processing nodes, provide buffering of events, and produce file storage of trace data. In the

AAARF system, data can be sent directly to the display system via Unix sockets. Since the data

is distributed between processing nodes, the instrumentation system must be capable of combining

separate traces into a single trace file. This is typically achieved by having an instrumentation

control program on one particular node. This controller program then manages all trace file I/O

activity. A typical instrumentation system is depicted in Figure 3.

2.3.1 PRASE: Data Collection System. PRASE (42) is a data collection system that is

used to produce execution traces of parallel programs. This system was developed at AFIT and is

specifically designed to collect data on the iPSC/2 parallel computer. The system incorporates the
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Figure 3. Typical Instrumentation System Structure

standard collection features that record inter-process communications and operating system calls

as event records. These events provide the data required to generate low level process displays (84).

In addition to these capabilities, the PRASE system enables the inclusion of more abstracted events

into the execution trace. These events record higher level algorithm states (42) and program data

structures. The trace data can be stored to a file or sent to a remote terminal over a communication

network. PRASE is the instrumentation system used by the AFIT Algorithm Animation Research

Facility (AAAPF) (84). A overview of the PRASE data collection software is contained in Appendix

A.

2.3.2 Reducing Instrumentation Data Volume. NASA's Ames Research Center has de-

veloped a system that reduces the volume of data collected by their instrumentation system (17).

The reduction is achieved by the run-time analysis of execution events based on user specified

requirements. The requirements are specified in the form of metric predicates. While this analysis

places additional overheads on the program being executed, it can reduce the amount of trace data
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generated to less than one quarter of the original volume. The article also gives guidance on how

to construct these predicates based on particular visualization requirements. The predicates are

effectively user defined conditional statements that, when evaluated, determine if an event is to

be recorded. For example, only message traffic to a particular node could be recorded when the

communication delay exceeds some specified bound. This particular approach allows data collec-

tion to focus on specified abnormal behavior, assuming that the data required for analysis can be

determined .iyriority. This type of intelligent event filtering provides one approach to the reduction

in trace vlume. Most current systems rely on selective tracing to reduce trace volume. Under

this approach, only certain sections of the program, or sets of nodes, are instrumented. The metric

predicate approach appears to be the only significant attempt at run-time trace data reduction.

2.3.3 Trace Data Standardization. Alva Counch's most recent paper on program visual-

ization (12) outlines a proposed trace data standard. While this particular implementation has not

gained wide acceptance, the concept is an important consideration for future visualization tools.

The standard proposed in this paper outlines a trace data language that describes how events col-

lected by the instrumentation system are to be translated into a normal form (12). The advantage

of this normal form is that the use of a particular visualization tool is not constrained by the

method used to collect the data. For the AAARF system to further develop, careful consideration

must be given to conforming to a trace standard when, and if, one eventually emerges.

2.3.4 The Pablo Instrumentation Software. The instrumentation system developed for

the Pablo (62) parallel program visualization tool provides a promising approach to trace format

specification. This system uses a self defining event language that can be extended by the user to

meet particular requirements. The system allows layering of these events to ensure control over data

collection detail level. This is particularly important for controlling trace volume. Pablo's adoption

by Intel for the Paragon (39) parallel processing system family, should ensure that it becomes a

standard for these systems. The advantage of manufacture support and seamless integration into
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the OSF operating system provides a model for other system developers. The trace format utilized

by Pablo is discussed in Appendix A.

2.3.5 Instrumentation Visualization System Connection. The majority of instrumenta-

tion systems collect trace data and store it as a text or binary ifie (43). The visualization tool then

analyses the results off-line, after the execution of the program. This off-line analysis is prohibitive

since it requires excessive amounts of data storage, even for short executions. As discussed in (84:4-

9), the AAARF system overcomes much of this problem by implementing a real-time connection

between the instrumentation system and the display workstation. The disadvantage with this ap-

proach however, is the resultant perturbations of the execution traces. For instances where detailed

analysis of timing information is important, these perturbations make real-time data collection un-

suitable. There remains a number of analysis problems where this approach is effective. Examples

include programs with extended execution times, data structure visualization requirements, and

program debugging. The ability to expand the run time displays to depict not only execution data,

but high level algorithm information, is also highlighted (84:4-11).

2.4 An Overview of Visualization Systems

A visualization system translates the event records collected by the instrumentation system

into animated graphical displays. The actual visualizations that are required by a user are de-

pendent on both the type of algorithm under examination and the computational platform. All

instrumentation systems for distributed systems are based on recording communication events.

Depicting this information in a variety of animation formats is the central component of most ani-

mation systems. An example would be the utilization displays shown in Figure 4. This animation

shows a histogram which displays the number of active and inactive processors relative to passing

time. This display allows the user to determine periods of lost processing capacity due to message

passing activity. The remaining AAARF animations are described in Section 3.4. These additional
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animations make it possible to determine other execution parameters that can be used to gain

insight into program behavior. Based on this insight, improvements to the program's design or

implementation may be possible. The following section outlines a number of current systems.

2.4.1 ParaGraph: A Visualization Tool. Paragraph is a visualization tool which displays

trace data collected by PICL (23). The Paragraph system was developed by Oak Ridge National

Laboratories and is discussed in (29). Paragraph is specifically aimed at distributed memory com-

puter systems such as the iPSC Hypercube series. The Paragraph system has won wide acceptance

in the academic community and is the most frequently utilized system in current research papers.

The most important factor in this acceptance would appear to be its availability and simplicity

rather than superior capabilities. Paragraph provides a range of displays that are aimed directly at

the animation of process level statistics and the animation of low level program events. Paragraph

includes only a very limited number of high level algorithm displays. These application specific

displays are suitable for depictinig small sorting problems. matrix transposition. and other matrix
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computations. Paragraph has recently been incorporated into the Intel ParAide tool-kit for the

Paragon computer system (39). This implementation has been modified however, to eliminate all

user defined animations and operate using the Pablo (62) trace data format.

Figure 5 depicts the Paragraph system. The system only executes in the post-analysis mode,

replaying previously recorded trace files. The system level events contained in the trace file map

directly to aspects of the supported animations. The number of processing nodes is also recorded

in the trace file and is used to scale the fixed format animation to the appropriate number of nodes.

Users can add additional animations based on user specified or system level events. These additions

require coding and re-compilation of the Paragraph system.

2.4.2 AIMS: The "VK" Visualization/Analysis Environment. One of the more extensive

systems currently available for algorithm animation is the AIMS system which has been developed

by the NASA Ames Research Center. The system consists of a number of component parts,

firstly the Xinstrument system that produces instrumented code and the AIMS monitoring system

that provides execution control and produces the event trace file. The trace file can be utilized

directly using the AIMS VK visualizer, or using other utility programs, converted to formats

suitable for Paragraph (29), Pablo (62), and Explorer (75). The most interesting aspect of the VK

visualizer system is the level of association between the code, execution traces, animations and the
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instrumentation system. Events in animations can be interactively selected and the section of code

associated with the event highlighted. The event types that are currently being displayed can be

manipulated using an extensive range of event filters. The displays provided include histograms,

gantt charts, and a space time diagram similar to Paragraph (28), however, more detail about the

events is available on demand. For example, a particular message can be selected by the mouse on

a time space diagram and the same event highlighted automatically on another animation. Under

Paragraph the information is only depicted and user interrogation of a particular feature is not

possible. One of the system's most powerful capabilities is the wiUm driven instrumentation system.

The user is not required to directly edit the application program to insert the instrumentation code.

The limitations of the system are its exclusive off-line operation and lack of user defined displays.

However, this is compensated for by its ability to work with the other major visualization tools

previously mentioned. AIMS is compatible with the iPSC/2 and iPSC/860 systems. A further

limitation of the AIMS VK system is its inability to deal with extensive numbers of processor

nodes. The current animations focus on systems with up to 300 nodes and are of limited use past

this point. No attempt has been made to cluster separate processing nodes into combined display

objects. Thus in most animations, every active processor is depicted. Under these conditions the

display resolution limits the number of processing nodes that can be depicted. Figure 6 depicts the

inter-operability features of the AIMS animation systems.

2.4.3 The Pablo Animation System. Pablo is an analysis environment designed to pro-

vide data capture and presentation across a wide variety of scalable parallel systems. The Pablo

environment includes software performance instrumentation, graphical performance data reduction

and analysis, and support for mapping performance data to both graphics and sound. Current

extensions to the Pablo system include data immersion via head-mounted displays and integra-

tion of High Performance Fortran (HPF) compatibility. Pablo's key features are the previously

described self-defining event formats and user configurable display formats. Rather than providing
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only fixed format displays, the concept of user configurability significantly improves Pablo's ability

to deal with application dependent animations. The graphical performance analysis component of

the Pablo system consists of a set of data transformation modules that can be graphically inter-

connected. These modules provide user specified data transforms on the incoming trace data and

map the resultant output to other modules of display animations. Pablo data analysis animation

displays include bar graphs, bubble charts, strip-charts, contour plots, dials, interval plots, kaviat

diagrams, scatter plots, matrix displays, pie charts, and 3-dimensional scatter plots (55). A block

diagram of the Pablo system is shown in Figure 7. The graphically composible transform modules

can be connected to form an acyclic graph. This graph structure defines how event formats are

mapped to performance parameters. This mapping can also include operations such as sorting,

counting, minima, maxima, powers, trigonometric functions, and simple statistics. The resultant

performance parameters are then mapped to specific display formats. The important aspect of
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these display formats is that they are independent. of the number of processing nodes and parallel

system architecture.

The system was designed to specifically tackle the problems of portability, scalability, and

extensibility. It achieves these objectives very successfully and is currently the most suitable for

work with massively parallel systems. Pablo is best viewed as a toolkit for the construction of

performance analysis environments. The system is a continuing work and under constant change.

The only major weakness from an algorithm animation perspective is its poor support for generation

of arbitrary display formats. Under the Pablo system, users utilize generic display formats and

produce mappings for interesting parameters. In many of the algorithms examined in this research,

animations generated from visualization of distributed data structures require more flexible display

formats.

2.4.4 ParAide: Paragon System Development Toolkit. One of the best indications of

the success of parallel algorithm animation systems is their adoption of these tools into the latest

version of Intel's parallel program tools set. The ParAide tool set was released in the last quarter

of 1993 and includes a range of development, animation, debugging, and system utilization tools

for the Paragon system. The system does not currently support the iPSC/860 systems. Intel has

included in ParAide a modified version of the Paragraph system (28) and has converted it .o ,e

compatible with the Pablo (62) trace format. This modification has resulted in the elimination of
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application specific animations which were included in the original version of Paragraph. While the

Paragraph component of the tool remains an off-line animation, the displays are complemented by a

real time display provided by the system performance visualizer (SPV). SPV provides a utilization

and node allocation display for the Paragon system. The performance statistics are updated every

second via Unix socket communications with the user display terminal. Both processor utilization

and message passing activity can be observed using this tool, including processor bus activity. Its

primary purpose is to allow users to determine system status and is only suitable for analysis of

program execution in a gross sense, due to the low time resolution. Of greater importance is the

acceptance by Intel of a particular trace format. This should at least provide commonality for

researchers utilizing Intel products. Intel plans to extend the ParAide animation suite to include

the Pablo (62) system. Pablo is possibly the most advanc-d of the current animation systems and

its inclusion will provide greater capacity to deal with massive numbers of processing elements. The

integration of the interactive debugger and the animation system, present in ParAide, is certainly

an important development feature. Actual utilization of the ParAide tool was possible and the

ability to control the execution of the target program during animation was of ?ignificant benefit.

If visualization tools are to be effective for program debugging, they must allow execution control

of the program under examination. The combination of program visualization and code level

debugger with execution control make ParAide an effective development tool. However, the lack of

application specific displays and data structure animations limits its use in algorithm development.

In fact for this research, ParAide provides no tangible benefit over the AAARF system.

2.4.5 VISTA - Visualization and Instrumentation of Scalable mulTicomputer Applications.

VISTA is an instrumentation and visualization paradigm (67:1) specifically tailored to directly

address scalability. The VISTA paradigm treats performance data essentially the same as the dis-

tributed data of the programming models used for parallel programming. VISTA focuses on views

that represent the physical or logical layout of the processing nodes. Color coding, or additicnal dis-
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play objects are used to depict actual performance statistics. The statistics that can be visualized

by VISTA include execution time, operation count, computation time, message volume, commu-

nication time, communication flow, communication overhead, and other percentage s' mmaries of

these factors.

The VISTA paradigm is composed of three components: Visualization, Data Parallel Repre-

sentation, a.nd Performance Measurement. The basis for the Visualization component is the state

of a Processing Element (PE), which translates to one or more quantitative metrics. For example,

the performance parameter could represent the total message volume for a particular processing

node. The visualization component is divided into four levels:

"* microscopic snapshot. A performance parameter K at some specific time on a particular

processor.

"* microscopic profile. A microscopic snapshot which allows K to vary over time. (An AAARF

or ParaGraph style single processor display).

"* macroscopic snapshot. A microscopic snapshot of all PEs at a specific time for a particular

K. This forms a two dimensional mapping and is essentially the same idea used by AAARF

and ParaGraph for multiprocessor displays.

"* macroscopic profile. A macroscopic snapshot allowing K to vary over time.

The four levels are referred to as Machine Views, and are instances of a general class of multivariate

data plots tailored to display performance measurement data (67:5). The snapshot views are simply

the instantaneous value animations (IVA), used in AAARF and many other systems (43:2-5). They

provide a static display of a set of performance statistics, the display being totally updated with

new information at regular intervals. The profile view corresponds to the windowed time interval

(WTI) displays, also used in AAARF, and other systems (43:2-5). These animations are usually

presented in a scrolling format, with sections of the display reflecting parameters at different points

24



in time. They effectively provide a short history (the length of which is dependent on the time

interval displayed in the window) of particular performance parameters.

2.4.6 MTOOL: A Shared Memory Visualization Tool. Stanford University has developed

a system for visualization of shared memory systems (24). MTOOL is compatible with only two

processing systems, the Stanford DASH (24:490) (an in house experimental system), and the Silicon

Graphics multiprocessor systems. Reported experimentation with MTOOL relates to monitoring

eight processor Silicon Graphics Inc. (SGI) 380 shared memory multiprocessor systems. MTOOL

is primarily a visualization tool, but includes the instrumentation system as an integral component.

The instrumentation system is operated via the display system. This system provides automatic

insertion of the instrumentation code into the user's code and adds only a 5% execution overhead

(24:481) to the program under investigation. In contrast to other systems, MTOOL does not

animate the execution of the program under test, but provides statistical summaries in the form

of graphs for particular sections of program execution. The system is under constant expansion

to include more insight into the problems of poor memory performance, a major consideration

for shared memory systems. The most interesting feature of the MTOOL system is its focus on

examining synchronization overhead, memory hierarchy performance losses, and the extra work

required in parallel programs (vs. sequential). The majority of other systems including AAARF

and Paragraph, consider the node as a simple processing element and internal performance of the

processing nodes is not considered. Optimization activity often focuses on memory allocation and

compiler optimization and thus this area is increasingly important to overall parallel performance.

2.4.7 Visualization Enhancement with Sound. Researcher's at Michigan State University

have recently examined the use of sound to improve the user's comprehension of the visualization

displays (18). The article examines the association of audio signals to a number of performance

parameters such as processor utilization. The most promising application is to alert the user to

some important global events when visualizing detailed displays of low level data. While this
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approach can only augment the visualization, as highlighted by the authors (18:435), it provides

an additional information channel to the user. Its use in focusing the user's attention to particular

aspects of the animation is also discussed. Limited use of this enhancement is appearing in other

research (33).

2.5 Summary

The goal of visualization research is to provide abstract views of the program's execution,

which require manageable instrumentation data requirements. The most widely utilized animation

systems, Paragraph, Pablo, AIMS, and ParAide all approach this goal in different ways. Paragraph

and ParAide are effectively the same and represent the older generation of systems. The fixed

format displays provided by these systems are informative and flexible for analysis but are inher-

ently un-scalable. They rely on strongly formatted events that can be mapped directly to display

formats. AIMs represents an improvement over Paragraph in that it allows interoperability with

data visualization tools. The visualizations contained in the VK animation component of AIMs

differ only in format and features from the Paragraph depictions. AIMs does, however, allow the

direct association of program instructions to animation displays. Pablo more directly tackles the

problems of scalability and portability. Pablo's system independent animations and trace format

provide scalability to meet the demands of massively parallel processing systems. The self defining

trace format also provides a basis for portability of the Pablo system to other parallel architectures.

The ability of programs to utilize the processing capacity of parallel computer systems may

well depend on the development of effective visualization tools. Visualization tools provide insight

into the complex execution patterns of parallel programs. This insight can be used by the program

developer to enhance or correct his design/implementation. In addition to providing insight into the

execution of parallel programs, animation systems can present quantitative data detailing execution

parameters such as concurrency level, utilization of particular processing nodes, communication
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volume/load, and synchronization overhead. While a number of systems for visualization currently

exist, the majority are utilized exclusively by the developing organization. The ParAide system

(39) provides the most promising indications that these animation systems will become more widely

accepted by application programmers.

While much has been achieved, commercial visualization systems such as ParAide still fail to

meet all animation objectives. For example, many of the views provided by ParAide are incapable,

due to scalability problems, of depicting the execution of programs on even medium sized Paragon

systems. In addition, the animations remain focused on depicting low level system performance

information, at the expense of abstract algorithm data. These low level animations depend on

detailed event traces that are unlikely to be possible on massively parallel system.

The approach taken with AAARF in this research departs from these low level animations

to focus on more abstract depictions of program behavior. This focus enhances scalability, while

reducing trace data requirements. It also allows realistic application of the real-time animation

capabilities of the AAARF system. To increase the use of animation tools within AFIT, this

research expands the capabilities of the AAARF system. The next chapter describes the initial

improvements made to the generic system level animations provided by AAARF.
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III. Animation Design, Synthesis, and Analysis

3.1 Introduction

The displays provided by current animation systems are largely application independent as

discussed in Chapter II. This ensures that new applications can be instrumented with the minimum

of effort. Animations of this type are usually generated from inter-node communication traces and

do not require knowledge of algorithm data structures. However, this limits the animation to

focusing on the algorithm's control flow, as it is reflected in this communication. This section

examines the development of additional application independent displays for AAARF that deal

with this problem. Animations included in other systems are evaluated and their effectiveness is

examined using a variety of linear algebra algorithms. To expand the educational usage of AAARF,

additional algorithms have been instrumented and a library established.

3.2 Instrumented Algorithms

AAARF was originally developed to provide an animation environment for serial programs by

Fife (16). The potential and flexibility of the original design resulted in its selection by Williams,

for use in parallel algorithm animation. The AAARF system was first utilized for parallel algorithm

analysis by Williams (84) who instrumented a number of parallel algorithms during development

of his extensions to the AAARF system. The Car-wash simulation (83) was added later by Wright

(86). An instrumented library consisting of the following parallel programs had been established

at commencement of this research activity.

"* Set Covering Program (SCP).

"* A Parallel Bitonic Merge.

"* The Car-wash Spectrum (64) based Parallel Discrete Event Simulation (PDES).

"* Intel Ring demonstration program (72).
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While this proved the utility of the AAARF system, the work by later researchers Lack (44)

and Wright (86) has focused on establishing a more stable implementation. The X windows version

of AAARF developed from the original SunView, by Wright, now provides a system suitable for

further algorithm research. To further expand the range of algorithm demonstrations available for

educational purposes, a number of programs have been instrumented.

"* Fast Fourier Transform. (45).

"* Matrix multiplication. (45).

"* Guassian Matrix inversion (45).

"* LU Matrix decomposition (45).

"* Three dimensional Wavelet Transform (45).

"* Mission Routing A* search (14).

"* Genetic Algorithm (Molecular Bonding) (6).

"* VHDL parallel discrete event simulation (5).

These programs provide a varied range of applications that cover many classes of algorithms.

The fast Fourier transform, matrix multiplication, guassian inversion, wavelet transform, and LU

decomposition are all data decomposition implementations of mathematical transforms. The mis-

sion routing implementation is a distributed search algorithm using the worker/controijer paradigm.

The genetic algorithm application is also a data decomposition algorithm, however, it has a non

deterministic execution behavior as a result of its probablistic search technique. The parallel dis-

crete event simulation is representative of algorithms with non deterministic control structures.

This diverse range of applications allows examination of AAARF displays on real programs. These

programs are now stored in the /usr2/aaarfDEMOS/ directory and can be used as examples by

future parallel research students. Instruction on their compilation and execution requirements are

contained in the AAARF users guide (58).
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3.3 Generic Animation Displays

This section examines the utility of the current generic animation displays when applied to

analysis of the programs previously discussed, the overall objective being to improve the current

animation ability of AAARF from both software development and educational perspectives. This

investigation sought to determine improvements to the AAARF system that provide meaningful

insights into the operation of other AFIT parallel research projects.

3.4 Analysis of Important Animation Criteria

An algorithm can be considered to be a combination of a set of data structures D and a set

of events (or operations) E. The definition of the algorithm would also include a control sequence

S for the event set E. From an animation perspective S is unimportant, since the animation is

showing the execution of the program, not controlling it. Thus for animation, we must focus on

the data structures and the events. This concept for animation was discussed by Fife (16) and was

elaborated by William (84). In a parallel implementation these events and data are distributed

across a number of processors. This distribution results in additional events and effects being

introduced as a result of the program's mapping to the parallel system. The actual mapping of a

particular algorithm to a parallel architecture is an optimization problem that is the focus of much

research activity (47, 70, 10).

We can build on this basic definition by considering the combination of this information into

the higher level more abstract information. This allows us to consider the program from a number

of perspectives:

"* System level events.

"* System level performance.

"• Algorithm performance.
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"* Algorithm Data Structures.

"* Algorithm Events.

System events and performance data allow us to determine how well we are utilizing the

capabilities of the target hardware. Events simply reflect the occurrence of specific actions. An

example would be the completion of a message transmission. Performance information relates the

occurrence of events to the passing of time. An example of this type of information would be per-

centage utilization figures generated from analysis of active/idle events. System level events are the

focus of the majority of parallel animation systems including AIMS, Paragraph, ParAide, VISTA,

and Pablo, discussed in Chapter II. In particular this information is gathered by recording com-

munication events in distributed processing systems. By recording only these events a significant

number of basic trace data can be produced. These include:

"* Periods of processor activity/inactivity.

"* Inter-processor execution dependencies.

"* Inter-processor message traffic.

Based on this generic data it is possible to determine a number of important execution pa-

rameters. In particular, we are able to examine utilization of both the processing capacity and

message passing bandwidth. These two characters can be depicted in a virtually unlimited number

of animation views. The data can be presented directly, averaged, summarized, or transformed

into an abstract representation. AAARF provides ten system level views which are common to

most animation systems. Animation research by other researchers has produced a preponderance

of other animation formats for system level events. While the number of views possible are ex-

tensive, the parameters of interest at this level are not. From the data collected using the generic

instrumentation of message passing events, we aim to extract the following information:

* Processor utilization both during particular phases and as overall statistics.
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"* Communication loading both during particular phases and as overall statistics.

"• Time synchronization of events on different nodes.

o Processor interplay and dependencies.

From depictions of this information we aim to better understand the behavior of the algorithm

when executing on a particular parallel computer system. With this information, modification and

enhancement of both algorithm design and implementation can be achieved. In most cases our

overall goal is to reduce the execution time required by the algorithm to produce our computational

results. This in turn is achieved by gaining maximum effective utilization of processing capacity. It

is important to note that these displays are all generated from tracing message passing activity. No

information relating to the actual on node control flow, or data structures is provided. To provide

this information, AAARF originally contained the following animations:

1. Animation: Processors are depicted in a circle. The color of the processor indicates its

status- idle, busy, blocked, or sending. Lines are drawn between processors to indicate message

activity.

2. Kaviat: The processors are located at the perimeter of a circle and spokes are drawn from

each processor to the center of the circle. The CPU utilization for each processor is calculated

and plotted along the corresponding spoke of the wheel, with the center representing 0 %.

3. Utilization: This view is a histogram which displays the number of active and inactive

processors on the vertical axis, and time on the horizontal axis. The active vs idle state of the

processor is derived from the message traffic: if a processor is blocked waiting for a message,

then it is idle. Otherwise the processor is considered active.

4. Feynman: This view shows two different types of data; processor status and message passing

activity. The processor status is shown in a similar fashion to the Gantt view, except that

the data is shown as a horizontal line that is broken when the processor is blocked. Once
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again, the horizontal axis represents time. The message activity is shown by drawing lines

between the horizontal lines representing the sending and receiving processors. The ends

of the lines are positioned according to the send and receive times. This clearly shows the

message passing patterns, delays, and bottlenecks. It is particularly useful in determining

critical paths in algorithm executions.

5. Communication Statistics: This view provides a detailed look at the communications

activity of a single (selectable) node. The data displayed can be chosen from three types:

processor source or destination for each message, length of the messages, or the message type.

6. Communications Load: This view shows statistics on pending messages for the entire

system versus time. Either the number of pending messages or the total length of all pending

messages can be displayed.

7. Queue Size: Statistics for the input queue for one (selectable) node are displayed in this

view.

8. Message Lengths: This view uses a different method of presenting message passing infor-

mation. The view contains a matrix, and a send operation causes an element of the matrix to

be colored. The sending processor determines the row and the receiving processor determines

the column. The length of the message determines the color.

9. Message Queues: This view displays the current status of the input message queues for all

the processors under examination. The display is a histogram with the processors along the

horizontal axis. The vertical axis can show either the number of messages in the queue or

the total length of the messages in the queue. As the queue levels rise and fall, a "high tide

mark" is left behind to mark the highest level that was attained for the run.

Examples of these displays are contained in the AAARlF users guide (58). All the above

mentioned displays are generated from event records that include only the following information:
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Figure 8. Utilization Animation of a Matrix Multiplication Algorithm

"* Time send command executed.

"* Time receive command executed.

"• Timed message received.

"* Message type identification.

"* Message size in bytes.

"* Source processing node.

"* Destination processing node/s.

By instrumenting programs with the basic PRASE event tracing we can readily animate many

aspects of the progran's performance. This should be the first step in developing any animation

since it provides preliminary information that can guide development of application specific displays.

The low level event tracing of processor utilization and inter- node communication are easily handled

by the standard animations provided in AAARF. Firstly, the utilization display (Figure 8) clearly

highlights the implementation's ability to utilize the allocated processors. In this particular examIple
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Figure 9. Feynman Animation of a Matrix Multiplication Algorithm

only two to three processors are on average being utilized. The Feynman diagram (Figure 9)

shows the effectiveness of the control structure decomposition and any load imbalance. In this

particular display it is possible to determine message dependencies and processor idle time due to

these dependencies. However, in more complex algorithms, without complementing these displays

with specific data structure animations, the reason for these execution patterns is impossible to

determine.

3.4.1 Deficiencies in current AAARF Animations. The AAARF system proved to be an

invaluable tool in analyzing the execution patterns of the algorithnis listed in Section 3.2. In par-

ticular, the information presented by the Freeman diagram (84) provided instantaneous recognition

of algorithm behavior. It was particularly useful when examining existing programs that were not

developed by the user. In this code reuse analysis type application, the display revealed a consider-

able amount of information about the program's structure. This includes information about event
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synchronization, and process interdependencies, how data was shared between processing nodes,

and the execution time cost of this activity. While useful for nearly all applications, the current

displays had a number of limitations, in particular, the lack of overall statistics displays for both

utilization and communication events. The following sections outline a number of improvements

appropriate to the current generic displays.

3.5 Message Color Coding

When examining the communication patterns of an executing program, the message type is

displayed on the status panel. This status panel only reflects the type of message last received.

Thus in the Feynman diagram for example, all inter-node communications appear as black lines.

This makes interpretation of the message traffic difficult and the control structure becomes hidden

in the shear volume of data. To regain this information, a method for distinguishing different

message types is required. This can be achieved by modifying some aspect, or aspects, of the lines

used to represent the communication events. While labeling, line type, and thickness could be

varied, the use of color coding gave a clearer representation.

This particular feature is included in other systems such as PICL. In the case of many pro-

grams, the message type indicates the commencement of different phases of the program execution

and thus indicates causal relationships. The AIMS (57) further extends this concept allowing user

interaction with the trace and subsequent depiction of the relevant code segment. While this ini-

tially appears appealing, it provides only a marginal improvement of the information contained

in the AAARF status panel. Relating a particular message to a code segment is, in most cases,

relatively simple since the message types are uniquely identified. This level of activity is more

relevant for functionality included in program debuggers where execution control is possible.
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3.6 Phase/Task versus Time Animation

A well-designed program consists of a number of separate functions. Whether the design

is object oriented or functionally based, certain procedures and functions relate to identifiable

program requirements. These requirements may reflect either required problem domain behavior,

or implementation dependent operations.

Under the functional programming approach, the functions represent transforms that are ap-

plied to the program data. The order in wY ich these functions are applied is specified in some form

of task graph (70), and the program's control structure enforces this sequence. Thes. functions

can be considered as tasks or jobs that must be performed in order to obtain the desired program

behavior. Thus, depiction of functions calls can providc insight into their order of execution, fre-

quency, duration, and distribution across the processing nodes. This can be particularly useful

when examining the results of task scheduling, or allocation activity. These are significant research

areas that have a large impact on the ability of users to design optimal parallel program implemen-

tations. Both aim to execute the functions contained in a parallel program, in such a manner as to

minimize execution time.

With an object based implementation, functions and procedures are utilized as object meth-

ods (69). In this programming paradigm, monitoring function calls allows depiction of methods

that are evoked on different objects during execution. Since in this paradigm, execution control

results from events generated by object updates, it is important that the user can observe this

behavior. Thus, independent of the program design paradigm, function calls relate to specific ac-

tions that are required to complete the assigned computational task. Since these functions are

often designed to reflect real world operations, they represent a user interpretable program activity.

Both the functional and object based approaches provide a level of implementation abstraction by

encapsulating operations into functions. This can be readily utilized by the animation system.
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The Pablo, AIMS and Paragraph animation systems provide task based visualizations. Pablo

in particular tends to emphasize program profiling aspects of this animation. All three systems

use Gantt type displays (84) to represent the individual processors executing different program

functions. This basic approach has been incorporated into AAARF.

3.6.1 Implementation in AAARF. The AAARF implementation of phase/task displays

allows the user to observe in a Gantt chart format, the commencement and completion of program

function cai's. The AAARF implementation allows greater user flexibility in that the color coding

of functions is not fixed. In the Paragraph (28) system, each function is allocated an integer value

and a color code. Each function is then represented on the display. The AAARF implementation

can provide this type of representation but also allows different functions to be treated as a dingle

entity. In this way the AAARF implementation allows the user to group functions based on the

area of interest. For example, all functions related to linked list management could be highlighted

against all other program activity. In this way, the overall effect of this program characteristic

can be examined. If further investigation is warranted, the different linked list functions could be

assigned different colors relative to all other program functions and examined in more detail.

This flexibility allows the user to not strictly consider the program as a combination of basic

functions, but as a collection of higher level activities or phases. A example of the phase animation

is shown in Figure 10. This particular example on eight processing nodes, is taken from the Mission

Routing research by Droddy (14)

3.6.2 Process timing. The analysis of the programs listed in Section 3.2 highlight the need

to time certain events. For example, the time required to execute a particular function may depend

largely on the data passed. In a situation where this activity is central to the algorithm's execution,

the average execution time and its variance provides the user with important information. This

data allows determination of scalability and the ability to predict performance on other systems. In
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Figure 10. Phase Display - Depicting program execution characteristics

this case. the use of a scrolling bar graph display provides a timed record of previous occurrences.

along with the maximum, minimum, and average values.

The animation allows the user to insert interesting event (IEs) marks at the beginning and end

of code segments under examination. The user is not constrained to measuring a single characteristic

but can insert any number of marks into the target program. During algorithm analysis. the user

can select which are to be displayed. Figure 11 provides an example of this display showing the

time required to perform population fitness evaluations in a genetic algorithm program. discussed

in detail in Chapter X.

3.7 Further System Level Displays

The additional animations discussed in this chapter en,,:,-led the capa.bilities of the AAARF

system. Based on the original objective of providing additional support to other AFIT research
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Figure 11. Process Timing - For Genetic Algorithm population Fitness Evaluations.

projects, the new animations are successful. In particular, the task/phase displays provide insight

into the execution of the program on the individual nodes. Previously, actual execution steps on

the nodes were not depicted and this addition reveals this aspect to the user.

The three additional animations outlined in this chapter were initially considered to represent

"a fruitful path for further development activity. This conclusion was based on the ability to generate

"a considerable number of alternative views of the same basic trace data, each particular variation

casting a different perspective on the underlying trace data. Trial use of other systems including

AIMS (57), Pablo (62), and Paragraph (28) revealed further displays that could be included in the

AAARF system. Paragraph alone includes an additional 20 display formats not currently contained

in AAARF. This does not include possible layout variations for each of these additional animations.

For example, the Paragraph equivalent of the AAARF animation display (Section 8.6) includes 10

variations to account for processor layout format (ring, mesh, grid, hypercube, etc) alone. However,

this initially fruitful area of experimentation fails to satisfy our objectives. For reasons outlined in
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the following chapters, the concept of fixed format displays is too restrictive to meet our animation

objectives. The addition of further fixed format displays provide only marginally more information

than the current AAARF animation and still leave a significant portion of the execution hidden

from the user. As highlighted in Chapters IV, V & X, application specific displays that present

algorithm data and control structures provide a significant leap in capability. The demands of

these application specific displays require animation development environments, not fixed format

implementations. To this end, Chapter IX discusses the development of an adaptive animation

environment that allows the construction of arbitrary animations without code generation. By

constructing a display definition file, the user is capable of generating virtually all animations

contained in other systems without coding. For this reason, further research activity was focused

on this work rather than minor variation to the current set of AAARF animations.

Another significant result of this experimentation was the realization that the current AAARF

system level displays are too narrowly focused on run-time analysis. These run-time displays depict

instantaneous, or short histories for the observed performance statistics. However, this does not

satisfy the requirement for displays that can summarize overall performance, or highlight periods

of execution that warrant more detailed examination. A good example of this is determining the

message distribution across system communication channels during program execution. In this case,

the actual run-time temporal behavior is relatively unimportant and only a completion summary

report is required. Relative message traffic volumes on physical interconnections are more important

for determining the suitability of a particular program decomposition. This observation gave rise

to the development of integrated analysis displays which are discussed in Section VI. This tool

aims to provide static displays that assist program development activity directly.
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3.8 Summary

The research discussed in this, as well as later chapters, highlights the futility of producing

additional generic animations. Only the lack of execution summary displays presents a shortcoming

in the present AAARE implementation at the system level. The development of this capability is

discussed in Chapter VI. Beyond this addition, the magnitude of improvement and the level of

insight required for analysis of program execution demands the use of application specific displays.

The following chapters apply application specific displays to a number of AFIT algorithm research

projects. The next chapter in particular, addresses animations for mission routing research (14).

This work culminates in the development of an adaptive animation generation environment.
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IV. Animation of Parallel Mission Routing Algorithm

4.1 Introduction

AFIT has been extensively involved in search algorithm research (1, 14, 35). Current research

includes the development of an A* search algorithm (59:63) for aircraft mission routing (35). This

section examines the integration into AAARF of a user interface and application specific displays

for this type of algorithm. The application specific displays and event definitions developed for

this application can be readily used for other search algorithms. This section clearly shows how

application specific animations can be used to enhance algorithm development. In particular,

animations that allow determination of actual algorithm performance, where execution time is

inappropriate, are developed.

4.2 Introduction to AFIT Multi.criteria Aircraft Routing Problem

The mission routing problem consists of the selection of a route to a target that will ensure

the greatest probability of success at the lowest possible cost (risk, energy, etc). The probability of

mission success is calculated by determining the radar exposure produced by the route. The ni

cost is simply the total distance traveled. Further, the problem can be generalized to incl;

additional requirements reflecting multi-criteria optimization. This problem has been examined

with parallel implementations by Grimm and Droddy (35, 14). The current implementation searches

a three dimensional grid within which both terrain and radar sites are modelled. The desired mission

destinations, radar sites, and terrain maps are contained in files that must be passed to the A*

search program.

4.3 Performance Statistics Displays

The total execution time required to produce a solution is often used as a measure when

evaluating different algorithms or various implementations. While the execution time provides a
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reasonable figure-of-merit for many problem classes (e.g linear algebra), the execution time for

search algorithms tends to be very problem dependent (4). Even with identical problems, a small

change in the search algorithm may result in large changes in performance which may not reflect

the general case (59). Subsequently, it is important to consider a number of higher level primary

measures to gain insight into the reasons for a particular performance result, the aim of new displays

being to highlight features that allow the user to determine algorithm performance on similar

problems and other parallel system architectures. The total number of nodes expanded during the

search process differs from one execution to another execution, even with the identical problem

and system configuration. This results from the non- determinism introduced by message passing

between processor nodes, since the processors are not synchronized. Thus, for load balancing and

node expansion optimization, total execution time does not provide an accurate measure.

To more accurately measure performance under these algorithm conditions, execution time

must be related to nodes expanded, not just solution time. The following parameters were consid-

ered to be of interest.

"* Search space nodes expanded per unit of execution time. Depiction of this information allows

determination of aggregate performance measured in search space nodes examined. (Nodes

per Unit Time).

"* Rate of node expansion per system processor. Depiction of this information shows the effect

of load balancing between processing nodes and reveals the distribution of effort for the

measured aggregate performance. (Expansion Rate at Processor).

"• Computational time per program phase (Phase Time). As a result of its repetitive execution

pattern, small improvements in frequently executed functions can provide significant increases

in performance. The execution costs of different program phases can be determined with

visualization of this information.
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The following displays have been implemented to meet this requirement. These displays

complement processor utilization figures produced by standard animations, but have the advantage

of relating more directly to the user's problem space.

4.3.1 Nodes per Unit Time Animation. This display allows the user to determine the

average time required for a node to be expanded by the system. The animation depicts, using

a scrolling bar display, the total number of search space nodes expanded by the system. This

animation provides a graphical indication of the current average time required to expand a search

node on a system processor. The information is presented as instantaneous value animation in a

bar graph format. The result of grain size experimentation can be evaluated using this display by

determining changes in the node expansion rate. This is important when determining the unit of

work to be allocated to the processors for optimum performance.

4.3.2 Expansion Rate Animation. The expansion rate display shows how much effective

progress is being made by individual processor nodes by displaying a bar graph representation

of nodes expanded by each processor node. This display is particularly useful in determining if

the algorithm is evenly balancing the work load amongst the available processors. This allows

the evaluation of load balancing strategies (14). In particular, the bottle necks introduced by the

controller/worker paradigm are made clearly apparent. With relatively small numbers of nodes the

controller is able to effectively utilize all worker nodes. As the number of nodes increased, (> 16),

many workers became under utilized. This particular animation allowed different work allocation

strategies to be examined visually.

4.3.3 Phase Time Animation. The search process can be considered to consist of different

phases that are repeated as nodes are expanded in the search space. The phase time animation

provides a Gantt chart animation of the interesting phases of the program's execution. Each node

processor continually executes the following basic loop in the mission routing program (14:5-12).
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While Node to expand

Get next Node

Generate Chiidren

Caicuiate new cost(Radar, Dispiacement)

Insert New Nodes in Linked List

Send seiected Nodes to Controller

End

By color coding these phases, the computational cost of list insertion, radar exposure cal-

culation and other functional components can be compared. This is a particularly useful display

as compared to the simple function call animations provided by other systems. In this case, the

combination of many functions into logical groupings helps to abstract unnecessary detail. This

approach is useful in providing a basic profiling function for parallel programs. This can highlight
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sections of code that would benefit from better coding and give a clearer indication of the impact

of different data structures on algorithm performance.

4.4 Animation of Search Space

The most common animation for search algorithms is a representation of the underlying

control and data structures. In the case of the mission routing problem, the use of search space

representations provide useful insight. In the case of the A* search algorithm, displaying of data

structures does not reveal the execution of the program, since in this case, the central data structure

simply defines the search space. However, the partial solutions and the nodes selected for expansion,

reflect the current status of the algorithm.

4.4.1 Search Space Representation. The search space examined by the mission routing

algorithm is a three dimensional grid which contains terrain and radar features. Three animations

of the search space were generated. Figure 12, 13 & 14 depict the current best solution, nodes

expanded, and the current areas being searched by the individual processors.

4.4.1.1 Current Best Path. The first display is depicted in Figure 12 and shows the

current best path of the nodes being expanded by the processors. The display uses color coding to

depict the vertical dimension. The status panel shows the cost of the current best sub-path and

the location of each processor in the search space. This display allows the user to examine how

well the search heuristics are guiding progress and where in the search space the processors are

concentrating their search effort.

4.4.1.2 Search Effort Distribution History. The second display provides an indica-

tion of the distribution of the search effort. This display provides a two dimensional representation

of the search space and uses color coding to indicate how often a column in the search space has

been visited (Figure 13). While a true three dimensional representation would be superior, the
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Figure 13. Two Dimensional Search Space Display
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current animation speed would be significantly reduced. To compensate for this, AAARF was ex-

panded to include the capacity to generate files suitable for input into the Matlab (41) or Explorer

(75) for data visualization. An example of this representation is shown in Figure 14.

This display proved particularly useful in guiding the development of new search heuristics.

It highlighted particular shortcomings that resulted from the problem domain. During the search

the A* algorithm expands a frontier of equal cost. However, in the absence of any radar, the cost

remains constant across a significant number of sub-paths. The original implementation provided

only a weak upper bound on the path cost and thus the A* algorithm degenerated into a breadth

first early in the search process. This was highlighted in the animation where the center of the search

mass was distributed in the areas with no radar coverage. In fact, in the majority of problem cases,

90% of the search effort was directed to searching areas that were irrelevant to the final path. Paths

which were 10 times the optimum distance were actually examined during the search including ones

that moved in the opposite direction to the goal.

This observation lead to the development of guiding heuristics that significantly penalized

partial solutions which did not reduce the distance to the target (14:6-7). Once this was corrected,

further limitations were determined with the detection of paths that looped back to the destination.

This further increased the search space and again triggered refinement of program search heuristics.

This highlights the important of using visualization to ensure a better understanding of observed

program behavior.

4.5 Development of User Interface

One advantage of the AAARF system is its ability to effectively manage interaction with the

user. The interface obtains a system partition on the remote host, passes input parameters, and

initiates execution of the mission routing software. For the mission routing program, the user can

select from the control panel the following parameters:
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Figure 14. Three Dimensional Search Space Display

* Aircraft Route (ato file).

e Locations of radar sites and their performance.

e Terrain map.

e Number of processing elements allocated.

This particular feature is an important aspect of the AAARF implementation that is over-

looked in other animation systems. In our particular application we are interested in allowing

students to examine the execution of complex parallel programs executing on various computa-

tional platforms. Considering the lack of standardization of commands, operating systems and

program development standards for parallel systems, the new user is often unable to even execute

sample programs. The AAARF system is particularly helpful in this area and can abstract from the

user complex input data requirements. Even the most experienced parallel programming students

can lose weeks of research time determining idiosyncrasies of new machines. This type of interface

support is not provided by any other animation system and appears to have strong merit in the

educational environment.
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4.6 Summary of Results

The instrumentation of the mission routing program enhanced the consideration of a num-

ber of important characteristics concerning parallel algorithm animation. When only the low level

events were examined, it was possible to determine that the desired sequence of events were oc-

curring, along with the effect of the underlying Rystem hardware. From this it was possible to

determine algorithm implementation efficiency. Without the addition of the higher level algorithm

displays however, it is not possible to determine program effectiveness.

The difficulties in analyzing parallel programs, without some form of visualization, was high-

lighted by the fact that previous work had focused on optimizing the control structure to improve

performance. While this would ensure greater scalability, the program was fundamentally flawed by

one of its search bounding heuristics. Without including the AAARF animations in post execution

analysis, algorithm development would have been significantly limited.

Further work in this area could focus on generating complete three dimensional animations

of the search space. These representations could include terrain maps and radar coverage represen-

tations. The use of a specific data visualization tool wouid be required to allow adaptability.

The next chapter examines the use of application specific animations when applied to parallel

discrete event simulation. Once again, generic animation displays provided very limited analysis

capacity when applied to this class of algorithms, providing an excellent opportunity for application

specific animations.
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V. Animation of Parallel Discrete Event Simulation (PDES)

5.1 Introduction

This chapter examines the development of animation tools to support Parallel Discrete Event

Simulation (PDES) (21). The majority of tools that currently exist for parallel algorithm animation

focus on communication and execution tracing to provide the information for the users. For linear

algebra and for many other application classes, the information about message traffic alone pro-

vides the majority of the information required by the user. For these problems, the mathematical

definition provides the specification for the program. Once the decomposition of the data is known,

the required operation on this distributed data dictates the communications. These displays are

often complemented with tasks and data structure displays.

When visualization is applied to problems such as discrete event simulation, these animation

techniques provide only a fraction of the information required for complcte, understanding. The

chaotic message traffic patterns typically provide only limited insight into the performance of simu-

lation. In addition, the interpretation of processor idle periods and other indicators of opportunities

for optimization, cannot be directly related to particular phases of the simulations execution. This

is further exacerbated since the traces produced are highly problem dependent and thus individual

message patterns may not be truly representative of the program's execution. This section de-

scribes development of animations that address these problems. The utility of these animations is

examined on both a VHDL (5) and Car-wash (83) simulations.

5.2 Parallel Discrete Event Simulation (PDES)

Discrete event simulation has long been used to create computer models of real world systems

(21). The basic principle is that state changes in the system being modeled are considered to occur

at discrete points in simulated time. The objects in the simulated environment react to stimuli by

producing future events in simulated Lime. PDESs are simply the decomposition of large simulation
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models into a collection of smaller sub-models that can be executed concurrently (21). These sub-

models are referred to as logical processes (LPs) and must interact with one another to enforce

the real word constraints of the model. In the message passing programming paradigm, these

interacting events take the form of messages between the LPs.

Ideal candidates for PDES simulation are systems whose physical processes (PPs) execute

concurrently and can be modeled by message passing among their corresponding logical processes

(LPs) (7:198-199). For example, electronic circuit systems can be simulated in this way, where the

LPs representing the components, or groups of components, that make up the circuit are partitioned

among the processors.

5.2.1 General Performance Model. The use of a global clock in distributed simulation

constitutes a bottleneck because the LPs would all operate in lock-step. At any global time t, a

number of LPs may have nothing to do. In asynchronous models, however, each LP contains a local

virtual time (LVT), and the LPs are allowed to progress at irregular intervals. In most models, LPs

communicate via time-stamped messages in the form of tuples, (tk, mk), where mk is the message

sent at LVT tk (7:199). The specific rules for message passing depend on the particular protocol.

A global event-list would also be a bottleneck in distributed simulation. Therefore, each

LP usually maintains its own event-list, or queue. Events either received or self-generated can be

scheduled in the local event-list, if necessary, as well as sent to "downstream" LPs, as required by

the model (7:198).

To ensure that the simulation reflects the real world problem, all events must generate the

correct effect and these effects must occur in the correct order. This requirement is referred to as

the causality constraint (21). That is, all events must be processed in time stamp order. Since the

events are distributed across a number of processors in a PDES, the determination of which events

can be processed is not a trivial task. The generation and consumption of events by the LPs is
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governed by the characteristic of the environment being modeled. As a result, the execution pattern

is effectively non-deterministic due to the multiple cause and effect relationships being modeled.

5.2.2 Distributed Simulation Protocols. Synchronous simulation protocols can be loosely

classified as either conservative or optimistic (63). Conservative protocols allow an LP to advance

its LVT only when it is absolutely certain it cannot receive an event with a time-stamp less than

the new LVT. The conservative implementation must include some mechanism to prevent deadlock

(7). Optimistic protocols allow each LP to proceed at its own pace even though events may arrive

out of the past. Optimistic techniques correct out of order messages by rolling back, i.e., restoring

the state to a time prior to the actual message time and then recomputing forward. This rollback

is invoked using some form of annihilation messages (63). The annihilation messages are passed

between LPs to cancel events that were incorrectly generated. Within these broad classes there are

an unlimited number of variations. Determination of the optimal protocol must often be decided

by experimentation.

The animations examined here focuses on PDESs that utilize the conservative protocols.

However, the concept could be extended to include the optimistic approaches, this is discussed in

Section 5.6.

5.2.3 Deadlock Avoidance. Characteristics of the problem domain can lead to deadlock

in the basic Chandy/Misra conservative simulation (7). This results from circular waits generated

between dependent LPs for event messages. To avoid deadlock a number of techniques have been de-

veloped, deadlock avoidance using null messages, deadlock detection and recovery and synchronous

algorithms (8, 63).

The simulations examined here use the NULL message approach to avoid deadlock. Under the

NULL message approach events that contain lower bound time stamp information are distributed

to dependent nodes down stream. However, this NULL message traffic has a significant impact on
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Figure 15. Block Diagram of the SPECTRUM Testbed from (64)

system performance (64, 77). To limit the impact of this NULL message traffic, many variations

of the basic strategy have been employed that reduce the number of NULL messages (20).

The visualization proposed in this chapter highlights the characteristics of the NULL message

traffic and allows analysis of NULL message reduction strategies. The animations are also useful

in analyzing demand (20) and deadlock detection techniques (8). In these applications specific

deadlock instances can be observed along with the protocol response.

5.3 Test Simulations

To examine the effectiveness of the proposed animations they were tested using two current

AFIT research projects (5, 83). Both these simulations utilize the SPECTRUM simulation test

bed (63).

5.3.1 Overview of SPECTRUM. In order to study classes of protocols for classes of

applications Reynolds from the University of Virginia developed SPECTRUM (Simulation Protocol

Evaluation on a Current Testbed using Reusable Modules) (65). SPECTRUM is a common testbed

used for creating parallel simulations by taking an application and breaking it into application
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components, i.e., "pieces" of the application that run concurrently. Each application component,

along with a process manager and node manager, make a logical process (LP), as shown in Figure 15.

The process manager provides LP-level functions to the application for initialization, local

clock management, and event handling. The node manager provides hardware-specific functions to

the process manager for event traffic among the LPs. To implement specific protocols, filters are

written that "intercept" an LP-level function call by the application. The filters may then invoke

protocol-specific actions, such as null message generation, LP polling for a message, etc.

AFIT has continued to maintain the SPECTRUM testbed as a baseline for simulations and has

further modified it to meet AFIT's requirements. Spectrums application independence has assisted

in simplifying experimentation with various message cancellation techniques. However, the major

advantage for visualization purposes is the standardization of data collection. The selection of points

of interest, and the subsequent insertion of the instrumentation code to record data structures, can

be particularly time consuming. The use of SPECTRUM allows this instrumentation code to be

inserted independent of the target application.

5.3.2 Simulations. The two applications that utilize SPECTRUM were examined using

the visualization techniques described. The first is a simple queuing Car-wash model with feedback

that consists of; 3 sources; 4 servers(washes); and 1 sink(exit) (83). In this model the cars can

be re-washed and a percentage are feedback to the sources. This effectively models a number of

interconnected servers, merge points, and consumers.

The second simulation examined consists of a circuit simulation program that is based on the

VHDL description language. This parallel VHDL simulation system was implemented by Breeden

(5). This simulation system decomposes the circuit behaviors into LPs which are then allocated to

processor nodes. The results of these simulation runs are the actual traces of the circuit operating.

The actual circuit examined by the simulation was a Wallace tree multiplier which consists of 1050

behaviors and can be decomposed into an arbitrary number of LPs. The design for this device was
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Node 1 NodeO0

Figure 16. Two Node VHDL Simulation Model

taken from Hwang and Briggs (34). The circuit consists of a shifted multiplicand generator which

generates intermediate results. The output of this is fed into a series of carry save adders, and then

a carry propagate adder where the twelve bit product is generated.

Other circuits have been examined including an 8 bit carry lookahead adder, 32 bit bit/byte

shifter, and ripple carry adders (5). A block diagram of the VHDL simulation system is shown in

Figure 16 for a simple two node configuration.

The SPECTRUM test bed allows the instrumentation of only the service level routines and

thus remains independent of the application and its configuration. Without this standardization

the instrumentation of the programs under examination would become a significant burden. This

task is simplified since AAARF simply redefines relevant Intel system calls, and thus modification
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of the code is not required for basic event types. To provide the additional displays, self defining

interesting events are used to captured simulation times, event type, event times, event queue

lengths, and SPECTRUM function calls.

5.3.3 Pseudo Real Time Displays. The most significant advantage of utilizing AAARF

for animation of parallel discrete event simulations over other animations is the pseudo real time

data collection. Considerable frustration has been encountered with debugging simulation systems.

Even with relatively small circuit simulations, for example, the Wallace Tree Multiplier problem,

execution times of 10 minutes have been recorded for various decompositions. These long execution

times and remote hosting lead to considerable difficulty in program debugging. By utilizing various

trace levels, constant monitoring of system progress is possible. It is also possible to determine the

state of simulation prior to failing. This can be particularly beneficial for examining simulations

that are prone to deadlock. While this low level of tracing obviousiy has a significant impact on

execution time, the use of the node memory as trace buffers can minimize this overhead. While

node buffering is limited by available memory, the continuous event dumping feature allows tracing,

with reduced accuracy, of entire simulations that would otherwise not be possible. The tracing can

later be enabled as required to examine only particular sections of the execution more accurately,

once points of interest have been determined.

5.4 Animation Techniques

When visualizing parallel applications such as linear algebra operations and other mathemat-

ical functions progress can be readily determined from standard trace displays. This is a result of

the deterministic nature of the operation being performed and its resultant algorithmic implemen-

tation. In many application areas the data structures manipulated by the program are contained

in the message traffic; thus program phases can identified by this message traffic. For these types

of applications the message traffic is relatively independent e rticular problem and directly
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reflects the algorithms design. Thus optimizing the message traffic based on a single observation

can in many cases improve execution in general, for this class of problems. The data structures,

and the content of the messages passeO, represent the problem dependent information.

With PDESs the actual generation and consumption of messages is almost totally problem

dependent. While the actual volume and transmission of messages is influenced by the simulation

protocol used, the actual specific problem remains the dominate factor. Thus observing the com-

munication of real and null messages simply reflects the occurrence of events at particular LPs. Any

information gained from sequencing, or individual observation, is unlikely to be of use in general

analysis of the PDES. Progress of the PDES can only really be determined by examining the local

virtual time LVT at the each LP.

While lower level processor activity displays provides information about work done by the

processors, the value of this activity remains unclear. For example processors can continue to

consume null messages. However, if simulation time progress is not made, then effective work has

not been achieved. Thus to provide useful animations of discrete event simulations it is important to

combine low level tracing of communication events along with the data structure they contain. The

low level animations allow us to generate the standard utilization and message traffic animation.

By combining the result of thes vel events, trends in channel usage, transportation delay,

processor activity, and other imporianlt characteristics can also be examined.

The higher level information provided by instrumenting simulation clocks and other data

structures allows clearer examination of the simulation process. Depictions of these data structures

provide the only meaningful method of examining the progress made by the simulation. The

detection of deadlock, violation of causality constraints and other program abnormalities can be

determined from this information. If the animations were simply depicting the basic message traffic

and processor utilization, these abnormalities would be difficult to determine.

Thus the goals of the PDES animations are:
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"* Determine system mapping characteristics.

"* Depict simulation time progress.

"* Highlight individual LP execution.

"• Determine true processor utilization.

"* Depict individual simulation phases.

Based on these animation goals the following parameters are selected for recording by the

instrumentation system.

"* Simulation time at each LP.

"* Latest time stamp message sent by an LP.

"* Message type (Real/Null).

"* Simulation time of each message.

"* Channel delay for each message.

"* Receive blocking times for each message.

"* Message queue length at each LP.

"* Time of function calls and returns (Function Profiling).

While this information can be readily collected, the volume of data recorded over an execution

cycle can only be effectively assimilated using graphical techniques. The animations that have been

developed are motivated by two related uses, education and program/algorithm development.

"* From an educational perspective the animations aim to explain the operation of PDESs and

re-enforce educational objectives.

"* From the program/algorithm development perspective the animations are aimed at providing

a tool to be utilized by the more experienced user to assist with debugging and optimization

of PDESs.
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The following section outlines the operation and use of the displays that have been devel-

oped. A total of nine displays have been created or adapted to specifically animate the important

characteristics of PDESs. The displays developed are:

"* Simulation Time Display: Depicts simulation time progress on distributed LPs.

"* LP Matriz Display: Depicts LP interdependencies.

"* Null/Real Message Display: Reveal synchronization protocol overhead.

"* Progress Display: Highlights simulation time progress and message volumes relative to exe-

cution phases.

"* Message Queue Sizes: Depicts internal program queues information.

"* Channel Statistics: Depicts message traffic load.

"* Message processing time: Depicts computational performance.

"* Blocking Statistics: Accounts for busy wait times to provide accurate utilization information.

"* Lookahead Display: Depicts simulation protocol performance.

5.4.1 Simulation Time Display. This display provides a simple bar graph representation of

the simulation time at each node. It provides clear indication of how simulation time is progressing

at each LP. Its main use is in detecting LPs that are making poor time progress. It scales well to 512

LPs. An example of the display is shown in Figure 17 for a 8 LP Car-wash simulation. Figure 17

also shows the conventional Feynman diagram and the simulation status panel. Note the complex

inter-node communication patterns. The status panel provides more detail about instantaneous

events such as message type and time stamp information. In this case the free running LP1 is

making significant progress relative to the other LPs. On larger simulations the problem type and

the LPs look-ahead ability may combine to produce an unexpected progress by LPs. While mainly

for educational purposes, the display does highlight relative progress at each node. In particular it

can highlight LP that make infrequent time progress.
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Figure 17. Simulation Time Display for Car-wash Simulation

5.4.2 LP Matrix Display. For small simulations, limited by screen resolution and the

user's interpretation ability, it is possible to examine each LP's performance in more detail. The

LP matrix display depicts the interconnection between various LPs in a matrix form and shows the

latest message times on each arc. Color coding is used to depict null and real messages and the

lowest and highest time stamp messages in the simulation. This display is shown in Figure 18 for

a circuit simulation. 'MOut' reflects the latest time stamp message sent by a particular LP, and

'Time' indicates the LVT at that LP. In this example LP3 has a LVT of 60 units, based on receiving

a null message from LPO at time 60 units, the only LP on which it is dependent. Based on it's

minimum processing time of 2 units it has sent a null to the only LP7, the only LP dependent on

its output.

5.4.3 Null/Real Message Display. When evaluating different null message cancellation

techniques, it is important to examine the volume of null and real messages produced by the
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Figure 18. LP Matrix, Null/Real, and Animation Display

simulations. This display depicts this information for each LP and updates with each message

sent. Much of the simulation research conducted at AFIT focuses on the development of tools to

automate the partitioning of behaviors into the LPs. This process is often analyzed using volume

of nulls and reals generated as one performance metric.

5.4.4 Progress Display. The progress display combines a number of interesting system

parameters and depicts them relative to the execution time for simulation. By selecting an execution

time interval, the following parameters are displayed in a scrolling bar graph for each time interval.

9 Average Simulation time progress.
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"* Message volume nulls/reals.

"* Max and min simulation time progress.

Proqress Display Max Scale - 100 x 1000000

Figure 19. Progress Display Simulation Time Progress

This display is shown in Figure 19 and has been useful in focusing attention on periods of poor

simulation progress. It has also been beneficial when examining the simulations to determine which

LPs and event and important to simulation progress. For example, determining which dependences

are actually delaying execution. This information can help guide LP to node allocations. Figure 19

shows the progress by the VHDL Wallace tree multiplier simulation. In this case the lighter bars

indicate the progress made by the lowest LVT LP and the darker bars the highest LVT LP.

Figure 20 shows this same display depicting the volume of null and real messages transferred

per unit time. The lighter bar indicates the null messages and the darker bar the real messages.

Summing two adjacent values, nulls first, gives the total number of messages transferred in the

sample period.

The horizontal axis represents program execution time and the sample period is selected on

the operators panel. On both of these figures each sample point represents a 100 ms period.
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Figure 20. Progress Display Null/Reals Volume

This animation can be particularly useful when developing NULL message reduction filters,

and deadlock and recovery strategies. AAARF allows analysis both algorithm and system state,

in pseudo real time, to be examined at the point of deadlock. This Information can significantly

assist with program development.

One interesting use of this animation is in examining the communications capacity of the

target processing systems. For any given architecture communications between nodes is restricted

by the interconnection network, transportation delay, and link bandwidth. Thus for a given system

there is a maximum number of messages that can be routed through the system in a given time

period. While this volume varies with computational load, simulation protocol, LP decomposition,

and other parameters, empirical measurements are possible. Our experiments Il;LVe indicated that

for a particular application program the message volume remains relatively constant, for a problem

class and a fixed number of node processors. From these experimental results and message volume

estimates for a particular problem it is possible in some cases to estimate program performance.

5.4.5 Message Queues Size. By displaying the length of message queues we can gain an

understanding of the backlog of events currently at each LP. The message queue display shows this
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information along with the maximum size reached by each event queue during the simulation. The

presentation of this information is similar in format to the simulation time display.

5.4.6 Channel Statistics. This display provides information about message traffic between

processor nodes in addition to the standard link volume displays provided by the basic AAARF

system. While the message volume per link is important, this animation provides an additional

graphical view of the inter node transportation delay. It aims to portray to the users the effects on

inter-node communication times due to message volume. For example, on the iPSC/860, the time

required to send a single byte message between nodes is approximately ims on a unloaded system.

However, this ;.s simply a lower bound since the effects of channel traffic and the receiver activity

can greatly increase this figure.
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Figure 21. Channel Statistics (File Output)

AAARF provides the transportatio, delay information in two formats. The first is simply

a text file that is suitable for a plotting package such as gnuplot(. This representation is show
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in Figure 21. The horizontal axis in this diagram is program execution time. The vertical axis

represents the message transportation time, with the actual events marked relative to the sending

time.

The second is an animation of the distribution of these message transportation delays. In this

view the transportation delay is divided into five user defined categories. Within each category the

number of message that encountered that delay are shown for each processor. In Figure 22 eight

processing elements are shown for the VHDL simulation of the Wallace multiplier. In this example

we have significant transportation delays which could result from receiving nodes executing the

receive command late, or channel conflict. However, in this case the receiving nodes are spending

a considerable time blocking for messages ( see Figure 23 ). This indicates considerable channel

conflict, which is in fact the case in this random partition of the Wallace tree multiplier. This

animation allows multiple configurations that reveal particular aspects of the programs execution.

"* Depiction of all inter-node communications or any subsets of nodes.

"* Include or remove the contribution due to receiving node not ready.

This display can be used to help determine communication channels that are producing

significant delays. For example, the distribution of message transportation times when the receiving

node was already waiting (blocking) highlights channel conflicts. Alternatively, displaying only

the message transportation time for messages where the receiving node did not wait reflects the

processor utilization. The overall distribution of transportation times , in general, provides a

relative performance measure for the program.

5.4.7 Message Processing Time. This display shows the distribution of computation time

required to process an incoming event. A simple scrolling bar graph animation is used to display

this data. The display also includes a static bar that shows the maximum. minimum, and average
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event processing times. This display gives a clear indication of the computation load generated by

events at a particular LP.

5.4.8 Blocking Statistics. This display shows the distribution of receive blocking and send

blocking times experienced by a particular LP. In many animations systems including AAARF the

processor is considered idle when blocked for communications. This idle/active representation is

then used to generate the utilization displays. This relies on the program under examination only

using blocking communication primitives. However, in the case where an LP simply probes for

incoming events, before executing the receive instruction, the utilization display becomes mean-

ingless. To overcome this problem, trace data is collected that records calls made to functions

that probe the message queues. Communication blocking is considered to commence at this point.

Thus, this display gives a clearer indication of the time spent waiting for events by each LP. The

display can be configured to display both the send blocking and receive blocking times.
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Figure 22. Channel Statistics Display (Transportation Delay)

When combined with the channel statistics display it can be used to determine processor

utilization and communications channel loads. An example of this display is shown in Figure 23.
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Figure 23. Blocking Statistics Display

Long periods of blocking for events indicates an LP is unable to continue effective work. While

this is inevitable in many simulations, excessive blocking can highlight areas where LPs can be

co-located to improve simulation performance. The converse is also possible for computationally

bound LPs. Computationally bound LPs will be reflected by nodes that have low blocking times

and large events queues. In this case an alternative partitioning of the problem between LP may

be warranted.

5.4.9 Lookahead Display. The ability for LPs to predict the future based on their own

characteristics and knowledge of the past is referred to as lookahead. The ability of the program to

exploit lookahead is critical to achieving good conservative simulation performance. The lookahead

animation shows the amount of lookahead generated by the individual LPs. This is shown as a

deviation from the current LP simulation time.

5.4-.10 Phase/Task Display. For the simulation to make time progress, each LP must

obtain, process, and generate new event messages. This cycle of execution includes insertion of

events into queues, actual computation of PP behavior, and communication with other LPs. The
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time required to perform these and other operations is dependent on the combined behavior of all

LPs. For example, LPs may be idle waiting for later time stamped messages from an upstream

LP. Thus, the time required to obtain the next event can vary greatly during execution. To better

understand the execution time required by each of these phases a variation of the AAAR.F Task

display is utilized. The modular design of SPECTRUM allows the instrumentation system to record

each function call made by the LP to the SPECTRUM simulation services. By animating these

function calls we can highlight particular aspects of the program's execution.

For example, Figure 24 shows the time required by LPs to send and receive events between

nodes. In this diagram the dark regions show the periods during which an LP posts a message

to an LP on another processor, and the lighter area shows the time spent by an LP waiting for

incoming messages. The white sections in this trace represent execution of functions unrelated to

these two activities.
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Figure 24. Phase/Task Animation Display

The display has been implemented to allow these functions to be grouped and color coded

in any manner desired by the user. This allows any particular combination of parameters to be
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examined. For example, all functions that manipulate event queues can be assign a particular color

and contrasted against all other functions.

It is also possible to obtain a clearer representation of system utilization. This display can be

used to depict the processing of real events as effective LP utilization, other activities as overhead,

and any send and receive blocking as idle. In this configuration the display can give a clear indication

of the amount of concurrent execution achieved by the simulation program.

5.5 Execution Analysis

The animation of the program's execution provides a more complete understanding of both the

algorithm and its mapping to an architecture. This is important from an educational perspective,

as is the ability also use this information to optimize program performance. There are three main

areas in which the simulation displays can be used to optimize performance.

"* Architecture mapping.

"* Message volume minimization.

"* Task Scheduling and Load balancing.

Optimization of parallel discrete event simulations is a particularly problem dependent pro-

cess. Even within a class of similar problems small variations in the problem space can result in

significant variations in both the execution pattern and simulation run time. Visualization and

its use in optimization is unlikely to completely overcome this problem. However, it is a useful

tool with which to examine these variations and assist in evaluating and locating possible areas for

improvement.

5.5.1 Architecture Mapping. Partitioning and mapping of discrete event simulations to

particular architectures is an optimization problem that is known to be NP-hard (22). As a result

a number of heuristic approaches have been employed to find solutions that are close to optimal
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(70, 74, 78). The use of static graph-based partitioning techniques (10) can provide an initial

solution, but these techniques cannot adequately address the non-deterministic execution pattern

of the simulation LPs. It is impractical to determine the actual order of execution of various LPs

prior to execution of the simulation, since this effectively amounts to the solution of the problem

being simulated. The message traffic required between two particular nodes in an LP dependency

graph can vary greatly between actual effective executions of the LPs, i.e ones that process real

events. As a result, efforts to apriori schedule LP executions is also thwarted.

This problem has resulted in many simulations requiring experimentation to determine effec-

tive mapping for particular configurations. The general approach is to produce LPs from the basic

physical processes PPs that result in the minimization of dependencies between LPs. Once this

has been accomplished the LP must be mapped to the physical processors. This mapping aims

at minimizing communication delays and channel conflicts between dependent LPs while evenly

distributing the workload. Examples of this approach are discussed in (10).

.... I I .. ... ......... .... ..... ...........

Channel Volume
(Source) (Max - 40)

0 1 2 3 4 5 6 7o m
1

2 -
6

7 mI
(Min =0)

Figure 25. Channel Volume Display (Virtual Channels)

However, this mapping is based on static dependency data. The actual dependencies created

during execution vary as a result of the progress made by different LPs. For example, link message
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traffic is dependent on signal activity in VHDL simulations. Where signal activity is defined as

the number of events generated during the simulation on this signal. Since there is no information

available on signal activity, partitioning can only be based on structural information of the circuits

to decide which signals and elements will be assigned to which partition. Thus once an initial

mapping has been achieved variations can then be examined based on experimental data. The

animation such as the Phase/Task display and Channel Statistics display can be used to focus the

optimization process on specific problem areas.

For any reasonable sized parallel implementation a fully connected processor system is imprac-

tical. As a result, the minimization of communication channel conflicts can significantly improve

performance. In some applications the critical path can, to some extent, be determined and com-

munication traffic arranged to minimize this conflict. This is typically achieved in linear algebra

application programs and can be finely tuned by experimentation (28). In these applications the

sequence and volume of communications can be determined and this information incorporated into

the mapping strategy. This would normally be achieved by weighting the edges in a dependency

graph of the LPs.

The information provided by the animation can assist in both the analysis and optimization of

these mappings. By combining the AAARF communications volume display information, shown in

Figure 25, with the LP dependency graph, bottlenecks in communication channels can be detected.

LPs must often share communication channels as a result of a particular mapping. These shared

channels can be examined to determine if the average message delay time is significantly greater than

the systems minimum. If actual execution results indicate that a particular link has a significantly

greater than average usage and delay this information can guide the development of alternative

mappings. Care must be taken to ensure this effect is not due to the receiving node executing the

receive command late, due to its computation load. This can be checked by examining the Blocking
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Statistics display to ensure the node is regularly blocking for incoming messages. If this is not the

case, the extended communication time indicates a load balance problem in the receiving node.

If these LPs are also significantly trailing the other LPs in both current simulation time at

the LPs and the highest time stamp message sent (as can be shown on the LP matrix display) they

are likely to constitute a section of the critical path. This process focuses optimization efforts on

sections of the critical path that were previously unclear.

5.5.2 Load Balancing and Task Scheduling. The simulation displays can be used to assist

in the task of load balancing by being configured to highlight nodes/LPs that:

"* are consistently waiting to receive input messages, and

"• have simulation times that are consistently higher than the lowest current simulation time on

any LP.

This information can be taken directly from the LP Simulation time and Node Blocking

Statistics displays. A peak on both of these displays indicates that a node has successfully completed

processing available event messages and is not delaying progress of the simulation. Underutilized

processors are reflect by LPs that have a consistently empty message queue and a peak on the node

blocking statistics display. They indicate possible opportunities for the allocation of additional LPs

or computationally intensive ones.

For simulations with static LP allocation, our ability to produce a well balanced implementa-

tion, is directly related to the generation of task schedules. The non deterministic execution pattern

of LPs and variations in task execution times, significantly limits the generation of task schedules.

While this remains a difficult problem to overcome, a number of techniques have been examined

and are discussed in (70, 74, 10). For pedagogical examples it is possible to use the information

generated by the phase task and message processing time displays to confirm applicability of task
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schedules. This is particularly useful in demonstrating scheduling algorithms in the educational

environment.

5.5.3 Minimization of Communication Volume. The simulations examined by this chap-

ter include various null message cancellation strategies that assist in minimizing the volume of null

messages transmitted between LPs. While these messages are essential (in conservative PDESs) to

avoid deadlock, they are pure overhead and consume vital communication bandwidth. A number of

displays have been created to show various null/real message counts both during and after execu-

tion of the simulation. While this helps with optimizing the mapping and the selection cancellation

technique, further improvement is possible. As with free running sources in the Car-wash simula-

tion, LPs making better than average simulation time progress can tend to saturate down stream

communication channels. In these cases communication channel transportation times increase due

to channel conflict. Low simulation time LP are then further delayed while waiting for events on

incoming dependent arcs that share these communication channels. The result being that simula-

tion progress is reduced due by the high volume of later time stamped events in the communication

network.

By examining the LP matrix display, the user can easily detect LPs that are sending messages

that are significantly later than those currently being processed by the receiving node. The matrix

display can assist in determining strategies that constrain the progress of some LPs to give greater

over all time progress. Care must be taken to ensure that the beneficial effects of lookahead arc

not subsequently constrained. That is, the later time stamped messages are simply waiting in the

event queues of down stream nodes. The periodic effects of this problem can also be examined by

using the progress displays.
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5.6 Ezpansion to Support Optimistic protocols

While this research has focused on animations for conservative simulation protocols expansion

to include optimistic approaches is possible. To depict optimistic protocols, time related displays

would need the ability to depict negative time progress. The displaying of additional message type

statistics, i.e. for annihilation messages, would be required. Information dealing with roll back

and storage of transient state information would also be required. Under the optimistic protocol

we would still be interested in examining the distribution of work across the processors and the

usage of physical communication channels. Thus many of the displays shown in later sections are

applicable.

In the case of the time progress displays, rollback information would be the focus of analysis.

Both the computational cost of this rollback and effectiveness of optimistic execution would be

depicted. The progress animations would be also depict negative time progress. Statistics gather

relating to NULL messages traffic could be replaced by annihilation message information. In this

case showing their propagation and computational effect.

The displays depicting simulation overhead would focus on the storing and reloading of state

information. The simulation time progress made at each node would tend to have a greater de-

viation from a global mean simulation time, than in the case of the conservative approach. This

results from the conservative implementation constraining individual LP by a minimum time stamp

increment. By examining the simulation time progress during execution, we obtain a better un-

derstanding of how optimistic execution is aiding simulation progress. This could be useful in

examining varying degrees of thrashing that can occur in optimistic simulations (20). Events can

arrivw out of order in optimistic simulations. Thus displays depicting the average and maximum

rollback times encountered during the simulation, would be of interest in determining techniques

to limit the unnecessary future computation.
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The current lack of research into optimistic simulation techniques at AFIT limits the imme-

diate applicability of this work, however future events may change this.

5.7 Summary

The animation techniques described in this chapter have provide useful insight into the ex-

ecution of parallel discrete event simulations. They are a logical extension of standard parallel

visualization techniques and highlight the benefits of complementing standard displays with appli-

cation specific animations. The animations are a practical application-specific display class, since

simulation development is often based on a set of underlying simulation primitives. This ensures

that code changes required by the instrumentation system are reused.

While useful from both the educational and program development perspective, the displays

can play an important role in optimizing the execution of the simulation program. Problem de-

pendent execution patterns generated by PDESs reduce the user's ability to isolate and optimizing

particular phases of a program's execution. However, the general trend information provided by the

displays can assist with load balancing and problem decomposition. By detecting uncharacteristic

system behavior, program optimization efforts can be more clearly focused.

The depiction of tend information was often well suited to post execution analysis displays.

This resulted in the development of a trace conversion and analysis tool for the AAARF system.

This enhancement is discussed in the next chapter.
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VI. Conversion and Analysis Tools

6.1 Introduction

This chapter examines the development of data analysis tools that can be used to analyze

trace data from a variety of application programs. The analysis tools highlight significant character-

istics of a program's execution. These characteristics provide a clear focus for optimization of both

problem decomposition, architectural mapping, and resource balancing. To enhance AAARFs com-

patibility with other systems, a data conversion facility that provides limited translation between

PICL (23) and PRASE (42) trace data formats is also implemented.

6.2 Overview of Analysis Process

The time period between interesting events captured by the instrumentation system is often

in the order of micro seconds (42), the actual duration being determined by both the processor's

clock speed and the algorithm under examination. As a result, the instrumentation system can

generate thousands of events per second of program execution time. Thus, when analyzing the ex-

ecution of these programs on a Sun workstation, the replay time can be a two orders of magnitude

longer than the actual execution time of the program. This is particularly limiting for programs

that have long execution times, for example Mission Routing (14). This problem also leads to diffi-

culties when analyzing programs that solve irregular problems. The execution patterns of irregular

problems are determined by characteristics of the specific problem being solved. An example would

be a search process where the control flow is altered by individual evaluations during execution. A

regular problem such as matrix multiplication will have the same execution pattern irrespective of

the particular problem under examination. Thus, it is possible to observe sections of the program's

execution, when dealing with regular problems, to determine overall load balancing and commu-

nication characteristics. In the case of the irregular problems, transient behavior may not truly
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represent overall execution behavior, since load balancing and communication characteristics vary

during execution. In these cases, a post execution summary of overall performance data is required.

It is possible to speed the animation by increasing the time step taken by the display system

between updates of the display. However, this does not completely eliminate the problem since

the events must still be examined, if not displayed, to ensure that the information present in the

next screen update is accurate. This large time step can also result in interesting sections of the

program's execution being missed. As a result of this, the animation system forces the user to

closely watch the execution of the entire program for points of interest.

From this observation it became apparent that users require tools that allow the trace data

to be quickly analyzed when collected off-line. This allows the user to focus on periods of the

execution that contain events of interest. In addition, the original AAARF implementation focused

on run time animation displays. These displays, while suited to their intended purpose, do not

provide execution summary information. The only animations that began to tackle the problem of

characterizing the whole program's execution, were the Kaviat and RVA animations.

6.2.1 Analysis Requirements. The aim of the additional analysis tools that have been

developed are to present information about the complete execution of the program. In this manner

they allow the user to determine periods of execution which warrant closer examination. For

systems with an extensive number of nodes, the determination of subset.; of these nodes that have

interesting behavior is also important. For processing systems containing more than 256 nodes (39)

animating the behavior of all nodes simultaneously is restricted by the display resolution. Thus,

for larger systems it becomes important to provide displays that quickly localize attention so more

detailed animations of small numbers of nodes or clusters of nodes can be animated.

To overcome this problem, the following basic system parameters were considered essential

in determining overall program execution characteristics.
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"* Distribution in time of message transportation delays.

"* Communication message volume between node processors.

"* Communication message volume on physical processor interconnections.

"* Node blocking time characteristics.

"* Concurrency time profile.

"* Overall processor utilization.

While this basic information is partially presented in a number of current AAARF animations,

it must be extracted from the animations by directly comparing the traces for different node

processors. The new analysis tool allows complete execution traces to be analyzed and the results

summarized in a single display.

The distinction between logical and physical processor interconnections is important for anal-

ysis of mapping strategies. The partitioning of a program determines the volume of message traffic

between logical program components. These logical components must then be mapped to the phys-

ical processing elements. While a number of mapping strategies have been developed, the message

volumes can often not be determined apriority. As a result, it is important to examine how close

the expected message volumes were to that message during execution. The combined effect of these

variations can then be seen in terms of the loads on physical processor links.

6.3 System Design

AAARF was originally designed to provide a basic algorithm animation framewoik that can

be expanded to include additional animation problem classes. These take the form of independent

applications that arc controlled by the AAARF base frame via socket communication. While

this has worked successfully and continues to promote expansion, it has some limitations. The

limitations result from the design decision to associate all active displays with a single application
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class. Thus, while within an application class multiple displays can be active, they depict the

execution of only a single application program.

The additional displays are aimed at post execution analysis of processor utilization and

message passing activity. They must provide the capability to analyze results from a single execution

and allow comparison with other results. It is also important that the tools be available to analyze

the current program and depict data gathered from previous executions. For this reason, the

additional displays were developed as separate tools that can be executed from within any display

class. Thus, the displays can depict results obtained from other executions, while the current

display class depicts the results from another program or implementation.

A system structure diagram of the additional analysis tool is shown in Figure 26. It is

implemented as a separate compilable application, as are all other display classes. It can be compiled

independently of AAARF, if required, and can be selected for execution from the AAARF base

frame menu. Note that all AAARF applications are designed to produce independent executable

files. This approach eliminates coupling between different developer's display classes, leading to a

more robust design. The implementation follows the same basic structure of AAARF with separate

files for each display type. The analysis tool includes a control panel which is used to initiate one

of the trace file conversion programs. After completion of the file conversion programs, the control

panel main routine in turn forks the relevant display class.

The control panel passes the filename to the conversion program along with other user spec-

ified information. Each conversion type is contained as a separate function. The output of the

conversion program is written to a specified file and in turn read by the display program. The

output from the analysis tool consists of sets of (x,y) co-ordinate pairs. Note: An additional (z)

co-ordinate is also added in some cases, for example mission routing. The file format for this output

places each tuple on a separate line in an ASCII file. This text format is suitable for input into a

number of plotting and data analysis packages such as, Matlab (41), Explorer (75), and Gnuplot
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(82). Since gnuplot is freely available on work stations at AFIT and the plotting requirements

are limited, gnuplot was used as the plotting package. However, users are free to select their own

if they desire. The file output of the conversion program can be readily used by Gnuplot(82) to

produce hard copies of analysis data. This implementation allows displays from multiple traces to

be depicted at the same time.

6.4 Overview of Analysis Tools

The central control panel is shown in Figure 27 and allows the input of a trace file name and

selection of conversions and display type. The input file can be either in the standard PRASE or

the PICL trace format. In the current implementation, the PICL trace conversion is limited to

only the communication primitives. The PRASE file input is compatible with all event types and

can use additional Task/Phase events to more accurately determine processor idle time.

The analysis tool provides a number of output files that can be generated from input trace

files and are listed below. The output from these conversions are in ASCII text format and are

suitable for input into graphical display programs for alternative analysis.

"* Complete Trace to text: This selection allows a complete PRASE trace file, recorded in binary

format, to be converted to text. This is useful in determining timing and event types contained

in trace files.

"* Selected Send/Recv's Only: This selection allows the conversion to text of communication

events contained in a PRASE trace file. The user can specify which node pairs are of interest

or include messages between any processor pair.

"* Selected Communications Time Distribution: Used to produce a data file showing the relative

distribution of communication times.
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"* Communications Time versus Execution Time: This display shows trends in the communica-

tion time relative to the program's execution. This information can be used to detect periods

of execution where the message congestion increases average message delay times.

"* Routing Information: This selection allows the interesting event markers that are inserted

into mission routing (14) trace files to be converted to text format. This produces a file

containing all co-ordinate tuples visited during the search process. It can be used as input

into any suitable graphics package such as MATLAB (41), or the Explorer (75) graphical

display environment.

The system also includes a number of graphical displays that are selected from the control

panel, including a interface with gnuplot (82).

"* Transportation Delay.

"* Communications Blocking Display.

"* Communication Volume Display (Logical and Physical).

"• Concurrency Profile Display.

The following sections outline the displays introduced by the analysis tool.

6.4.1 Transportation Delay. This display is designed to focus attention on periods where

communication times were particularly excessive. This can be a result of long blocking times due

to poor correlation in time, message size or channel conflict. The message transportation times are

shown relative to the execution time of the program in this display.

The display can be adjusted to show all communication events or any combination of nodes

and transportation times. For example, it is possible to show only communication events that

were received by nodes that had been blocking for a period greater than the average transport

delay. This highlights periods where dependencies in the program under examination caused low

utilization.
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6.4.2 Communication Blocking Display. The communication blocking display depicts the

distribution of blocking time experienced during execution. The display records the time node

spent blocking with the csend and crecy communication primitives. This display shows how well

synchronized in time the inter node communication events are with respect to each other.

Many applications do not make use of blocking type communication primitives, for example

Spectrum (5). In these cases, combinations of the isend, iprobe, crecv and irecv communication

primitives are used. For this animation the irecv does not present a problem since the processor

is continuing with useful work and is effectively not blocked. However, the common usage of the

iprobe to detect message arrival and then execution of the crecv command to read the message

presents a problem. The iprobe command in this case is effectively used as part of a busy waiting

loop. Thus the processor is actually blocking for communications.

To overcome this problem of artificially high utilization, the display provides an optional

selection which includes input from Task/Phase trace events. By placing task event markers around

the section of code that executes the busy loop, we can ensure that the blocking display correctly

reflects the system activity. In this mode, blocking is counted during periods of busy waiting.

6.4.3 Communication Volume Display (Logical interconnections). The logical communi-

cation volume display depicts the number of messages sent between processors during the execution

of the program. The display is formatted as a matrix (see Figure 28) with all sending and receiving

nodes listed. In this way the volume in a particular direction can be determined. The display uses

both a pie chart representation of the message volume and color coding to present the information.

This particular display uses data collected for a Spectrum VHDL simulation (see Chapter V).

6.4.4 Communication Volume (Physical Intcrconnections). This display is identical to the

logical communication volume display in format. This display however, includes message volumes

only on physical processor interconnections. Most current parallel processing systems utilize a
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subset of the links that would be implemented in a fully connected system due to cost constraints.

The result is that communications between processors must share communication channels. In

the current AAARF implementation on the iPSC/i860, a hypercube is used for interconnections.

However, others exist such as tree, mesh, cube, prism, and ring structures. This animation uses a

physical processor interconnection specification and routing map to determine message volume on a

particular physical link. The current implementation includes only the definition for the hypercube

architecture and could be later expended to other topologies.

6.4.5 Concurrency Profile Display. One feature that is present in many other systems

is a display that provides a summary of the total processor utilization. This information is often

depicted as a bar graph showing the number of processors utilized over the entire program's execu-

tion. It is particularly useful in determining what percentage of the program executes sequentially

and what level of concurrency is achieved in the parallel sections. From experiments with various

algorithm classes it became apparent that this form of display was lacking in AAARF. After exper-
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imenting with a number of different displays it was found that the simple bar graph display used

by PICL provided the clearest presentation.

6.5 Trace Data Conversion

To allow greater flexibility in data collection for the AAARF system, a conversion program was

developed. A conversion tool has been combined into the AAARF menu system and produces PICL

comparable execution traces from data collected using the PRASE (42) instrumentation system.

The PICL system is currently the most widely used instrumentation suite and is compatible with

the complete range of Intel parallel systems. Further work on this conversion program was not

undertaken as a result of product releases scheduled by Intel Corporation in the last quarter of

1993. The latest set of programming tools available for the Intel Paragon, ParAide (39) include

trace data collection. The format used is that developed as part of the Pablo (62) project. This

tracing capability is built into the Paragon operating system and thus is likely to make other trace

formats redundant on the Intel series of parallel systems.

The conversion process, as implemented, is restricted to the communication and utilization

event types, due to limited support for high level algorithm event tracing incorporated into PICL.

The PICL system differs from PRASE in that it does not redefine the standard Intel communication

calls to include event tracing but requires the user to use specific PICL calls. In addition, a number

of initialization calls must be made.

6.6 Summary

The static analysis displays examined in this section including transportation delay, com-

munication blocking display, communication volume display (logical/physical), and concurrency

profile add significant capabilities to the AAARF system. Without this type of display, detailed

analysis of program execution cannot be performed easily. The basic system developed for this
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experimentation provides adequate capabilities but does not allow flexibility in the display format.

Environments such as Pablo (62) provide a user friendly design system to produce custom display

formats. This approach would appear a flexible alternative to allow users to build onto the basic

displays included in the AAARF analysis tool. Implementation of such an animation environment

is discussed in Chapter IX.

Building flexible display formats is only half of the problem. To ensure that the resultant

animations reflect actual system behavior and the data collection requirements can be met, we

must examine the instrumentation system. The accuracy of the data presented by the analysis

displays and the other AAARF animations is dependent on accurate trace data. The next chapter

examines the impact of event tracing and a number of related restrictions.
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VII. Performance Analysis of Trace Data Collection System

7.1 Introduction

This chapter examines the problems inherent in trace data collection systems. Analysis of

the tracing overhead ensures that the level of observation, allocated resources, and perturbation

effects are appropriate for the planned visualizations. Specifically this analysis aims to quantify

the tracing overhead introduced by PRASE (16), the data collection software used by AAARF.

Instrumentation and tracing of executing algorithms can consume significant resources and impose

performance variations that can render the collected data irrelevant for detailed examination of

performance. The secondary goal is to determine the scalability of PRASE and other data collection

systems and in addition real time data collection capability. This type of analysis indicates the

practical issues involved in pursuing algorithm animation for current massively parallel systems.

7.2 Instrumentation Overhead for PRASE

The data collection system introduces an additional overhead into the execution of the pro-

gram under examination. This is a result of the extra code inserted into the target program to

record interesting events (16). The significance of this overhead is dependent on particular as-

pects of the program under examination and the characteristics of the underlying algorithm. Both

these characteristics effect the volume, type, and freqýrency of event data collected. The overhead

introduced by AAARF can be considered to include two basic components.

"* The time required to store time stamped events in local memory (Computation Overhead).

"* The effects of additional message traffic required to dump trace data to host (Communications

Overhead).

The following sections examine this overhead in detail. The analysis is not only applicable

to PRASE but to all software based data collection systems. Only with the use of non intrusive
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hardware based data collection can these effects be ignored. Hardware based instrumentation

systems are discussed in detail in (50). The implementation used in PRASE contains the same

fundamental steps used in both PICL, and Pablo (62).

7.3 Computational Tracing Overhead

It would initially appear that the computational overhead would be quite small, however, the

actions required to record an event are relatively complex. The minimum data required to specify

an event includes the following items:

"* Recording node.

"* Start time of event.

"* Time of event completion.

"* Event type or format information.

"* Event data fields.

To minimize trace volume, most data collection systems. including PRASE, use events with

duration. For example. events such as send and reck, require an operating system call. Depending

on the availability of message channels for sends, and appropriate incoming messages for receives,

these calls can block execution of the node program. Since the duration of this blocking is important

to our analysis, it must be accounted for by trace events. If only a single time stamp was used

for each event the tracing system would be required to create two event records, one for start and

one for complete, doubling the trace data volume. The secondary advantage of this approach is

the ability to simply redefine communication primitives to an alternative function that includes the

event generation code.

To actually record the event we must execute instrumentation code that generates this in-

formation and appends it to the current list of event records. Since we are only examining the

91



computational overhead in this situation, we can assume that all events are to be stored in local

memory. The most costly aspect of the event tracing is determining the actual time stamps for the

events. Obtaining the current local time requires operating system calls on the iPSC/2,iPSC/860.

and the Paragon. On the iPSC machines, the node clocks are not synchronized and must be ad-

justed to reflect the correct global time. This adjustment is necessary to ensure that events on

different nodes are referred to the same time frame. Thus, the minimum functions required to

record an event are:

"* Procedure call overhead.

"* Two calls to system clock.

"* Two long integer additions.

"* Two integer memory to memory copies.

"* Memory copy for event data (1 to 1K bytes of data).

Both the node operating system and memory cache contents greatly effect the actual du-

ration of this event recording. It is therefore best to determine the actual overhead imposed by

experimentation. To analyze the effects and size of this overhead, the event times from a number

of application programs were examined. By recursively storing two thousand events with only the

loop overhead, then subtracting the cost of this overhead, it was possible to determine the actual

event recording duration. This test was conducted on both the iPSC/2 and the iPSC/860 and the

results are contained in Table 7.3.

System IE(type,datal,data2) Comms Event
IPSC/2 500 jm S 280 ji S
IPSC/860 300 i S 170 u S

Table 1, Average Time to Record an Event (Experimental)

This is not the only variability introduced into the event trace data. The time function calls

on the iPSC/2 and iPSC/860 have been shown to only be accurate to within a 501tS time window
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(40). When this is combined with the effects caused by the tracing routines, significant distortion

of event records can occur. As would be expected, this variation can cause events to be recorded

out of order, a common problem with all current software based instrumentation systems. This has

begun to be addressed by post processing techniques (71). AAARF does not currently account for

this overhead or out of order events caused by distortion on event times.

7.4 Communications Overhead

The real-time data collection facility in the iPSC/2 and iPSC/860 implementations of AAARF

introduces the additional overhead of transmitting events to the host. This overhead includes the

cost of sending an event message, or messages to the host using iPSC message passing primitives.

The greatest disadvantage here is the fact that synchronous message passing is required between

the nodes and the host. Thus the node processor must wait for connection to the host and the

communication to complete. Attempts to use asynchronous message passing to the host have

proven unreliable in my experiments with PRASE. The limited message buffer space on the node

combined with frequent blocking to the host, causes the available message buffers to be depleted.

Based on the current implementation of AAARF, the following event transfer times were determined

experimentally.

"* Average time to transmit event to Host for iPSC/2 = 9.5 mS.

"* Average time to transmit event to Host for iPSC/860 = 6.4 mS.

"* The important parameter here is that there is no upper bound. If the Host is swamped with

event packages from the nodes any particular node can wait indefinitely.

As can be seen from the above data, events sequencing information is nearly completely lost

during event dumping periods. The additional effect of this overhead is to reduce the effective

bandwidth of the communication channels. However, since little useful information can be gained

during this period and the program has already been significantly perturbed, this additional effect
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is less critical. This is a particularly important result since AAARF does not provide data buffering

of all event types. This implementation decision made by Williams (84), results from the strongly

typed data buffer implemented in PRASE. As a result, any IEdata() events are sent directly to

the host and if this particular event type is used, this timing error is introduced into the trace

result for every IEdatao call. Implementations should utilize separate 1E0 calls to allow accurate

time tracing when required. IEdata calls should only be utilized when storage of large arrays are

required and event timings are not the focus of analysis.

7.5 Combining Effects of Overhead Types

PRASE allows the two types of overhead to be traded against one another using variable trace

buffer sizes. With a trace buffer sized to one, each event is sent directly to the host. This avoids

the problem of limited node memory for trace files, a very constrained resource. However, this

introduces significant variations in the program's execution, as seen previously. The main problem

with this technique is that all data is collected on the host and the trace data must be transferred

to the host across the same communication channels used by the program under examination. The

actual time period for this activity is mentioned in the previous section. To better understand

the effects of this problem on complete application programs, a number of sample progr. ms were

executed with no event buffers. The effects of this can be clearly seen in the increase in e;xecution

time shown in Figure 29. This particular figure provides data for the VHDL simulation pi )gram

with different levels of event tracing. While trace information generated in this manner is unsuih able

for analysis of performance, this level of tracing remains a useful feature for debugging.

To avoid these significant perturbations, trace buffers can be used. The size of these buffers

are limited only by available node memory. This form of tracing eliminates the communications

overhead and only the much smaller computation overhead remains.
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Figure 29. Execution Time with No Trace Buffer

While the use of buffering limits these perturbations in the resulting trace, it introduces

problems with trace volume. This trace volume problem has been a focus of much research activity

(51). The key to reducing this volume is to produce more compact trace formats and allow intelligent

selection of events to record. This can be further enhanced by combining individual events into

higher level composite events.

Figure 30 shows the volume of trace data collected for a sample range of application programs.

The information shown in this figure has been normalized based on the program's total execution

time.

This event volume can be divided into that required for the basic communications event

tracing and that required to produce the algorithm animations. The volume of trace data produced

is thus dependent on the type of algorithm under examination and the level of tracing utilized.

Figure 30 also shows this distribution for the VDHL simulation (5) which tends to represent a

communication bound program.
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Figure 30. Normalized Trace Data Volume (KBytes per Node per Second)

7.6 Trace Data Volume

Parallel processing systems are rapidly increasing in both the number of processors they

contain and in the execution speed of their processors. The volume of trace data collected during

the execution of an application on these systems becomes a considerable problem. An estimate

made by (68) predicts that the one minute execution of SOLOMAN (68:544) benchmark on a

1024 node i860 will generate trace files in excess of 50OMeg bytes. Recent research efforts have

attempted to address this problem, however, no significant progress has been made. As a result

most tracing systems are limited to tracing only segments of the program's execution. This is the

typical approach taken by PICL (23).

PICL is limited to tracing data up to the maximum volume the processor's node memory can

store. Once this limit has been reached the tracing is discontinued. This limitation is compensated

for by the system allowing the trace to be enabled and disabled at different points in the program's

execution. An alternative approach was incorporated in the Ames labs visualization system (57)

AIMS, discussed in Chapter 2.4.2. The AIMS system allows the users to specify what data is to be
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collected, by allowing the insertion of a number of predicate statements. These predicates which

are evaluated as trace data is collected, only record events that meet the user's specified conditions.

The AAARF system approaches this problem by allowing the processor nodes to dump trace

data during program execution, to the host processor. While useful from a conceptual understand-

ing or debugging perspective, the perturbations introduced limit its usefulness in detailed analysis.

It is important to note that AAARF, like PICL, is already ci f producing relatively accurate

traces when they can be contained in the node memory. The following section discusses additions

to the AAARF system, that have been included to assist with reducing trace data volume.

7.6.1 Trace Data Minimization. The PRASE system uses a )mbination of C language

Oifdef statements and include files to redefine the Intel system calls for event tracing. This enables

programs to be instrumented with the minimum of effort, unlike PICL which requires the Intel

system calls be replaced with calls to the PICL library functions. The inclusion of trace data

collection into the operating system for the Intel Paragon should significantly improve the ease

of data collection. However, the implementation used for the Paragon system does not address

trace volume minimization. In addition, tracing on the Paragon is currently limited to system level

events only (39).

7.6.1.1 Limiting Event Tracing. The level of tracing provided by PRASE can

be divided into system level function calls and interesting algorithm events. Tracing of both these

events during the program's execution produces the largest possible trace file for any given program

instrumentation. The interesting events cause a particular problem as they can contain entire

algorithm data structures such as snapshots of an array's contents. To alleviate this problem, it

was decided to divide the trace types int,, logical blocks that could be enabled or disabled by the

user. A number of alternative methods for reducing trace volume, including trace predicates and

trace file format changes were examined. Dividing trace events into logical classes was considered

the most effective method due to the fixed data requirements of most animation displays. For a
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particular animation, a set of events will be required to correctly render the desired image. For

example, utilization displays are only meaningful if all periods of inactivity are recorded. There is a

separation however, between the system and algorithm events since they update different animation

displays. In particular an application specific display may only require a single interesting event

marker to produce a correct animation.

The following technique has been developed to allow the level of event tracing to be varied

with the minimum of user effort. Every application program that utilizes the PRASE data collection

system uses an Oifdef PRASE statement to allow inclusion of the phase.h file. This file contains

the definition statements that redefine the Intel system calls to the instrumented PRASE calls. For

example, caend() becomes prasecsend( . In addition to the basic PRASE compile flags, additional

definitions have been included that allow control of the data collection. These modifications to the

prase.h file allow user selection of the following event tracing levels.

"* Particular message passing. Use compile flag PRASE and replace interesting communication

pairs with prasecsend and prasecrecv. This is also possible for non blocking communications.

"* All system level events. Use compile flag PRASE and ALL. This provides tracing of all

communication events and Intel specific system calls.

"* High level algorithm events. Use compile flag PRASE and ALG. This provides event tracing

of only user defined algorithm events.

"* Tracing all events. Use compile flag PRASE, ALL, and ALG to enable tracing of all

possible event types defined for the application program.

"* Collection frequency. Some application programs, mission routing for example, allow the

frequency of the trace collection to be defined. In this case a tell count variable is included

to allow specification of the data collection rate. This variable only effects the IE and IEdata

event types.
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These techniques require further refinement and a more convenient user interface. However,

they do provide the ability to reduce the trace volume by orders of magnitude in many cases. For

example, with the mission routing problem (14) the search space diagrams are updated after every

200th node expansion and provide that order of reduction in the trace file size. If significant interest

is shown in particular sections of the execution, shorter tracing periods with more detailed data

collection can then be focused on areas of interest. The insertion of further conditional statements

within this framework is also possible.

7.7 Future Impact of Data Collection Limitations

Research into the development of new and interesting animations provides a virtually unlim-

ited scope of possibilities. Many of the animation systems are beginning to address the problems of

display scalability for massively parallel processing systems (62). However, the ultimate acceptance

and use of these displays is dependent on the ability to collect the associated trace data. From

the previous discussion and other research examined, it would appear that while reductions are

possible, a significant limitation remains in our ability to provide detailed views of long execution

periods. This section examines the question of whether system level event tracing is applicable to

massively parallel systems.

7.7.1 System Focus. To examine this question, an analysis of parallel computing systems

and their capabilities is required. While there are many systems currently available on the parallel

processing market, there is increasing convergence on the MIMD architecture. The Connections

Machines CM-5 (81), the just released Cray Research's T3D, Intel's Paragon, and others are in-

creasingly utilizing commercially reduced instruction set CPUs in their parallel systems. Processors

such as the DEC Alpha (11), Intel i860XP (37), and Sun Sparc processors (31:E-6) are by far the

most commonly used processors for these systems. The relatively high performance of these devices

coupled with interconnection bandwidths of between 2 and 400 MHz and communication latencies
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of 10O14S, lead to a range of very course grain systems. This course grain structure simply implies

that substantial processor elements are located at each node. As a result, the algorithms imple-

mented on these systems are aimed at utilizing this capacity by decomposing the problem into

larger individual chunks. In a fine grain approach, the problem is decomposed into smaller less

complex sections and can extend even to the bit level.

The recently released Intel Paragon (39) system represents this emerging broad class of MIMD

machines with high speed reduced instruction set (RISC) processors and a mesh interconnection

network. Lower order interconnection systems such as meshes are being utilized to limit the num-

ber of physical interconnections as the number of processing elements they contain increases. The

Paragon is used as the baseline system for these calculations as it provides an approximate model

for many present day systems. There are currently over 50 Paragon systems installed, with single

installations containing up to 2800 processing nodes per system. The Paragon system recently

acquired by Wright Patterson Air Force Base contains 240 processing nodes. This particular ma-

chine is the likely target for future AFIT parallel algorithm research. This represents a significant

increase over the performance of the current AFIT system.

To provide an estimation of likely trace data volumes on the Paragon system, we must consider

three basic components: system performance characteristics; event storage; and algorithm behavior.

7.7.2 Processing System Performance. The parallel processing capability provided by the

Paragon can be represented by the following simplified set of operating parameters

* 50 MFLOP processing nodes.

* 50 a Second transportation latency.

* 200 Mhz internode communication bandwidth.

* Node operation system time slice 1 of a second.
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These characteristics provide a representative picture of a large parallel processing system

in current use. Note: A linear model approximation of communication time is used. This ap-

proximation is frequently used for determining decomposition strategies and estimating program

performance and is discussed in detail in (45). It is interesting to note that the number of hops

required to reach message destination no longer plays a significant role in determining performance.

Only a 5% variation is experienced in communication time between any two nodes in the system.

This does not however, account for message conflict for a particular channel.

While considerably dated by today's standard, AFIT also utilizes an Intel iPSC/2 system.

To provide a comparison, the parameters for this system are:

* 0.5 MFLOP processing nodes.

* 900 a Second transportation latency.

* 2.8 Mhz internode communication bandwidth.

7.7.3 Event Storage Requirements. To model the data collection and storage requirements,

the following representative event sizes from PRASE are used. These values are comparable with

that achieved when using the PICL (28) data collection system in compact format. For this

examination it is considered that only the following listed events are to be recorded during execution.

This provides the minimum subset required to produce basic system level displays. These events

are used to generate Feynman, Utilization, Kaviat, and other similar animations.

"* Communication primitives (25 bytes per event). - Veomms

"* Operating system calls (10 bytes per event). - Vcontext

"* Message buffer state (10 bytes per event). - Vqteue

The communication primitives require trace information to be recorded by both the source

and destination processing nodes. The Intel Paragon includes a complex Unix operating system
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on each processor node. The processing nodes are not solely allocated to a single user and can

belong to more than one user partition during execution. As a result, the overhead imposed by the

operating system and any task owned by another user must also be included in animation displays.

The iPSC/2 uses the simpler N operating system on each node processor and only one user can

be allocated a processing node. While it is possible for iPSC/2 nodes execute more than one task,

these tasks belong to the same user application and thus this additional information is not vital.

7.7.4 Approximate Algorithm Model. The programs provide a more difficult element to

model since their granularity significantly effects the number of events produced during execution.

For communication intensive tasks, message passing can require over 80% of execution time. In

applications with higher degrees of parallelism, communications can account for less than 5% of

execution time. This is further complicated by the fact that both the communication patterns and

message size determine the actual number of communication events that occur per unit of com-

munication time. From analysis of the applications examined as part of this research, 10% of the

execution time would be a conservative estimate of the communication time for a representative

parallel application. If we assume that during this period, 50% of processors participate in commu-

nications with messages of approximately 1K byte, it is possible to approximate the communications

load.

"* Program message passing overhead estimated at 5%, 10% and 20% of program execution

time.

"* Average message length 1K Byte.

"* Message passing pattern with 25% of processors pass messages to one other processor during

communication events. This is referred to as the average message passing participation rate.
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7.7.5 Trace Volume Calculation. This section calculates the trace volume for a number

of program scenarios. To determine this information, the following parameters and equations are

used in the calculation of trace volume:

"* Total tracing duration in seconds - Ttrace

"* Average message length in K bytes - AVeso-Jength

"* Number of processing nodes - Pnodea

"* Internode communications latency "Tcomm,•j•ay

"* Interconnection link bandwidth in MHz - BWmhz

"* Operating system time slice in seconds - OS.w

"* Percentage of execution time for message passing - Moverhead

"* Message passing participation rate as a percentage of total system nodes - Mparticipation

"• Trace volume produced by communications event in bytes - Vco"mm

"* Trace volume produced by operating system context switches in bytes - Vconte't

"* Trace volume for message queue size statistics in bytes - Vqueu, e

Average Message Duration AVm..-

Tcomm-delay + Avmeossaength X 1 Seconds

Total Trace Volume Total volume --

MoVerhead Mparticipation X 2 X (KVomms + Vqiueue ) + Veontext X Pnode 1 X ) x c100 x AVnexP X 100 OS1,
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Moverhead Nuxnber of Processors
18 1 32 128 256 512 1024 409

0.05 128K 512K 2.OM 4.OM 8.2M 16.4M 66M
0.10 255K 1.0M 41M 8.2M 16.4M 33.8M 132M
0.20 509K 2.OM 8.2M 16.3M 33.8M 65M 260M

Table 2. Trace volume for one second of execution on Intel Paragon.

Using this equation the trace volume for a number of scenarios can be determined. The

scenarios examined include tracing on the Paragon for 1 second, Paragon for 1 hour, and iPSC2

for 1 second.

Paragon One Second Scenarios. This example shows the volume of trace data

generated by an Intel Paragon in one second of operation. On a 256 node system this would be

enough time to multiply two 1000 x 1000 matrices of floating point numbers. Table 2 shows the

results of the trace volume calculations.

Ttiace = 1 Second AVmess-length = 1K bytes

Tcomm-delay = 5011 seconds. BWmhz = 200Mhz.

OS., = 0.1 Seconds.

Paragon One Hour Scenario. When expanded to more realistic sized problems.

the data storage requirements become immense. Table 3 shows the full extent of the problem. For

this calculation. Ttiace = 3600 seconds, and all other parameters are as previously specified. The

table values represent the number of bytes of storage required. It is obvious from the values in this

table that the program tracing in this manner would be virtually impossible. However. this raises

the question of how the user detects errors in program behavior. If your program simply changes the

system 20 minutes into execution, what data can be collected at that point to assist in debugging.

This is particularly relevant if we are trying to examine the execution of the algorithm, not simply

its mapping to a particular system. In this application, we are looking for logical errors in design,
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not bugs in implementations. Unless we are allowed to examine these longer periods of execution

we are unable to determine such features as data convergence or other progress properties.

I Moverheadi Number of Processors

1 128 512 I 1024 4096

I0.05 I7.4G [ 29.5G 59G [240G]
0.20 29G 118G 230G 940G I

Table 3. Trace volume for one hour of execution on Intel Paragon

iPSC2 One Second Scenarios. The reason why trace volume is now becoming

more of a problem can be seen from the result shown in Table 4 for the iPSC/2. Many of the

animation systems in use today were initially developed for a system such as the iPSC/2. Their

poor internode communication performance and slower execution rate lead to a lower rate of event

generation. A good example in the change in performance can be highlighted by floating point

performance of newer systems. For floating point multiply operations, the i860XP processor in the

Paragon is 40 times faster than the iPSC/2. This was measured using the LINPACK benchmark

(13).

Ttrace = 1 Second Avmeajength = 1K bytes

Tcomm-delay = 900p seconds. BWmhz = 2.8Mhz.

OS., = 0 Seconds.

Moverhdea Number of Processors1 1 1 4 8
0.05 3.5K 14K 56K
0.20 14K 56K 224K

Table 4. Trace Volume for One Second of Execution on Intel iPSC/2

These lower event generation rates are, to some extent, compensated for by an increase in

total execution time. However, the problems examined using these systems were in most cases

smaller in dimension and thus often required only similar total execution times to that of more

current applications.
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7.7.6 Results Summary. The figures produced above provide a graphic illustration of

the scope of the trace data volume problem. The values calculated correspond well, in terms of

total volume, with other similar results (68). When we consider that execution of many parallel

applications requires tens to hundreds of system hours, this level of tracing becomes impractical.

From these results it is possible to speculate that this form of event tracing will be relegated to

examining the execution of small program kernels, not complete applications. While this is not a

completely new concept, it highlights the futility of producing highly abstract scalable displays for

this type of event tracing. If this level of tracing is applied to a larger system it will be to examine

very detailed behavior for short periods, on a subset of nodes. The most obvious application here

would be debugging where the user is likely to require examination of each state change. Thus, high

level displays must be generated for high level event data, not produced from abstracting detail

from low level event tracing. A top down approach to event collection add display, rather than the

more prevalent bottom up approach should be adopted.

It is important to focus animation techniques on increasing the abstraction of lower level

algorithm features. This would not only provide a reduction in trace volume, but allow more direct

correspondence of events to algorithm behavioral components. These events are also simpler to

compare with program constraints to monitor correct operation of the program under observation.

The occurrence of simple events such as messages and context changes cannot easily be related to

program progress, particularly if the execution is non-deterministic or recursive in nature.

7.8 Real Time Animation Requirements

If we consider the additional requirements of including real time data display. the problem

of event tracing becomes more difficult. In this case, the parallel processing system's input/output

capabilities must be included in the calculations. To provide this capability, the trace data collected

at each node must be gathered and passed to an external display system. For the current iPSC2 and
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iPSC860 this involves sending the data directly to the host processor using the Intel communication

primitives. This is then passed to the display terminal using Unix socket communications. This

relatively simple model, which is implemented in AAARF has the obvious bottle neck at the host

processor. Figure 31 depicts this configuration.

If we expand this to the more advanced Paragon system, the Host node is no longer included.

In this system the processing nodes are arranged into sets of service and computational nodes.

Processing nodes in the service partition are used for interactive users and computational nodes

alloc-ated to user programs. Any processor in the system can be allocated an I/O interface directly

by the addition of a network interfacing card. However, most systems utilize I/O through separate

processing nodes allocated to an I/O partition. Figure 32 illustrates a typical Paragon system.

Note that the number of nodes in the vertical direction are limited to 16 nodes.

A standard I/O system for a 512 node Paragon would consist of one Ethernet connection and

one HiPPI port (53). For the 2800 node system at Sandia Laboratories, two HiPPI interfaces are

used. Thus while the demand for high I/O data rates exist, cost in most cases limits the actual
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total I/O bandwidth of the system. The maximum data effective transfer rates measured (53) for

these interconnections are:

* HiPPI Interface - 66 MByte per second.

* Ethernet - 2 MByte per second.

To actually localize trace data to nodes that have an interface connection, the trace informa-

tion must be passed via the processor communication mesh.

7.9 A Manageable Real Time Event Rate

The overhead produced by the message traffic required for real time execution tracing provides

a significant limitation on this type of tracing. The results shown in Figure 29 indicate that even

for a small scale system, the effects of this type of tracing are enormous, in many cases causing

orders of magnitude increases in execution time. As the dimensionality of systems increases, the

problem is compounded. This section estimates what level of tracing is possible on larger systems

such as the Intel Paragon. For the processing model, we use the 240 Node Paragon located at

Wright Patterson AFB, since this is one of the targets of our research at AFIT.
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This Paragon system includes the following data transfer capabilities:

"* Two Ethernet connection.

"* Five HiPPI Interface.

"* One FDDI network connection.

Currently AFIT is connected to the Paragon via Ethernet only and thus real time animation

will be very restricted but still possible in limited cases. Animation of algorithms for execution

monitoring and debugging is likely to remain on Ethernet for the near future and is particularly

relevant, since remote hosting on other distant systems will remain a requirement. The higher

speed interfaces will be utilized more heavily by applications producing graphical results for direct

visualization of data. However, with later expansion of the network, or by utilizing co-located

workstations, the FDDI or HiPPI interconnections could be used. Considering a representative

application on the Paragon, it would be likely to have access to the following system resources:

"* A compute partition containing 100 to 200 processing nodes.

"* The user logged onto the system via Ethernet to a node in the service partition.

"* Program data stored on RAID disks connected directly to nodes in the I/O partition.

"* Access to a HiPPI or FDDI node in the I/O partition.

The computational system model is thus a mesh with service and I/O nodes allocated along

one or both vertical edges of the mesh. The Paragon limits the vertical dimension of the mesh due

to physical requirements. Figure 32 shows a block diagram of a typical Paragon system.

7.9.1 Data Transfer Rate. The actual transfer rates of the interconnection system be-

tween the graphical workstation and the target system significantly limits our real time animation

capabilities. It is pointless to have real time animations that lag the execution by such an extent

that simple ftping of stored data files could produce the same result.
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Determination of the data transfer rates that can be supported by the systems I/O devices

provides an upper bound on trace data requirements. This in turn, provides an indication of the

appropriate level of abstraction for the animation. This type of animation is not restricted to

simply examining program execution and can include visualization of partial solutions.

7.9.2 For Ethernet Only Connection. For this calculation we will assume that our program

has exclusive access to a particular service node and I/O node with a single Ethernet port. The

Ethernet system has a nominal bandwidth of 10 MB/sec, however, the practical upper limit on

transfer rate is much lower. The actual transfer rate is effected by traffic load and message sizes

used. For these calculations a bandwidth figure of 1.2 MBytes per second is used, this represents

the data rate that could be obtained when the network is lightly load. This value was determined

from experimentation with the current AAARF system and assumes a combination of individual

events. It is important to remember that this can range greatly depending on data packet size.

Effective bandwidths of less than 10K Bytes per second have been measured.

Based on these bandwidth values, the maximum trace volume generated per second by the

system would be limited to 37.5K bytes, assuming 32 byte events. Dividing this by the number of

processing elements in the system the corresponding figure per processing node can be obtained.

* Assuming 240 processing nodes.

37500
Trace Volume per second per node = 37500 = 156 events.

240O

From previous analysis shown in Figure 2, approximately 1 x 240 = 120K events per second

could be generated by such a system. Thus, it could be expected that under these conditions we

can achieve only approximately one thousandth of the resolution required when only displaying

communication events. This factor is based on 240 processors and scales directly with the number
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of processors. Therefore, the resolution must be reduced by the same factor as the number of

processors are increased.

At this data rate, the cost of collecting the trace data at the I/O node is minimal. The 200

MB interconnection between processors results in less than 1.0% loading on the channels adjacent

to the I/O node. This would however, require intelligent re-combination of events as they are sent

to the data collection node. If each event was transmitted separately with no buffering, the message

latency would play a greater role, leading to an unacceptable 37500 x 50u x 100 = 187% utilization

of the inter-connecting channel to the Ethernet I/O node.

7.9.3 For HiPPI or FDDI Network Connections. The FDDI and HiPPI networks are

ideal for real time data visualization. They provide the necessary high speed interface data transfer

rates to approach television quality real time display. This resolution requires a 90MB per second

data rate (31), to support updating at 24 times a second and 24 bit color.

For this calculation we will assume that our program has exclusive access to an I/O node

with a single HiPPI port. The HiPPI system has a nominal bandwidth of 100 MB/sec. The typical

transfer rate obtained in practice is around 68MB/sec. These figures were obtained by Messina

(53) on a Paragon system. Using the results from (53) we can perform the same calculations using

the time required to send data to the HiPPI node and the time required to transfer it over the

HiPPI channel to our remote display system. This highlights the delay associated with gathering

the data at one node in the Paragon system. The effective bandwidth actually available for real

time event animation is reduced from the theoretical value of 100 MByte per second to 6.35 MBytes

(see Figure 33). Performing the same calculations as before produces a maximum interesting event

tracing rate of:

* Assuming 240 processing nodes and 32 byte events.

111



Hippi Node

1.86 seconds 21.381A seconds 14

68 bytesh

4.4 Mbylesi/

Compute Node

1.86 seconds 21.38 seconds 14.26 seconds 1.47seos

68 Mbyes/

6.35 Mbytes/

2.7 Mbyte~s

For 77 frames at 1.3 Mbyte each - 10OMbyte

Figure 33. Limitation of I/O Capacity for Distributed Data (HiPPI)

6.35M
Trace Volume per second per node = 240 x 32 = 826 events.

In this case however, we begin to place a significant overhead on the processing node inter-

connection network. While obviously some data reduction can be performed on the nodes, this

figure still reflects a good guide to the upper limit of event tracing. In fact, the actual traffic load

with ideal message combination would account for less than 5.0% of the channel capacity into the

HiPPI node.

7.9.4 Further Data Visualization to Complement Algorithm Animation. With the HiPPI

levels of data I/O, visual rendering of partial or transient solutions can be performed. Data visual-

ization is both an important tool for presentation of results and effective technique for examining
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program execution. With data volume forcing an increase in the level of observation for algorithm

animation, greater use of data visualization will be required.

The Paragon now provides significant improvement in graphics capability with increased

hosting of graphical applications directly on the Paragon system.

7.10 Graphical Enhancement on the Paragon

The Paragon system takes full advantage of the Unix operating system, which is now hosted

on each node. On the previous iPSC systems, only the host processor executed a full Unix system,

with the nodes having only a limited communication based kernel NX (76). On the Paragon,

each node has a full featured OSF/1 operating system, providing additional file management and

process control features. For animation capabilities, the operating system now allows direct access

by compute and server nodes to the following features.

"* The X Windows System and the Athena widgets.

"* Distributed Graphics Library.

"* OpenGL graphics system.

This capability allows for the instrumentation system to directly execute on the Paragon

system while manipulating the animation on a remote display system. However from my analysis,

the advantages of this approach are not clear. The demand on I/O capacity is already the limiting

factor and a remote X windows server is not going to improve this restriction. This is particularly

important since one trace event can be used to update an unlimited number of animation displays.

Only when full use of the HiPPI I/O capacity is available, can significant improvements be made.
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7.11 Additional Considerations on the Paragon

The implementation chosen on the Paragon system reflects a trend to more advanced oper-

ating systems on the processing nodes. While these changes improve the user's ability to control

parallel disk I/O and other system services, it adds an additional layer between the user and the

hardware. This separation reduces the user's ability to predict the performance of the system under

specific conditions. To animate the execution at a system level, the operating system activity must

be captured and animated. This is not a simple task, as it was on the iPSC/2 system since on

the Paragon, a program's performance is a function of all user programs currently executing. In

particular, the Paragon allows the following operating parameters and functions:

"* Different user partitions can be allocated the same processing nodes.

"* Time slicing between user applications.

"* Unix based priority scheduling of user applications on processing nodes.

"• Pass through message routing.

"* Horizontal communication channels are used for all disk and user I/O.

The pass through message routing allows messages from different user partitions to be routed

through each other's partition. In effect, message latency within any partition will depend on the

effect of other applications. As a result, low level communication based displays are unlikely to

provide useful information unless sole access to the system can be assured. This problem is further

compounded by file I/O. In the Paragon system, disks are allocated to the I/O partition which is

physically located at the ends of the horizontal communication paths (Figure ??). Therefore, any

application requiring file I/O is likely to utilize the majority of the available bandwidth on these

horizontal channels. Since these channels will pass through all but trivially small partitions, the data

collected by the instrumentation system would be corrupted. From these operating restrictions, it

is clear the low level animation on the Paragon will be dependent on system wide instrumentation.
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The current implementation of ParAide does not attempt to address these problems and is unlikely

to in the near future. Thus, while ParAide provides algorithm animation capabilities to system

users, the usefulness of the resultant data is less accurate than previous animation systems.

7.12 Summary

The analysis in this chapter indicates that the level of observation used during algorithm

animation must be considered in order to resolve the problems associated with trace volume. A

realistic upper limit on the frequency and size of trace events was developed. For a Paragon system

with 240 nodes, real time animation over Internet should aim at less than 200 events per node per

second. If a HiPPI interface is used, this can be increased to less than 1000 events per node per

second. This can be scaled inversely with the number of processing nodes, however, event combining

must be utilized. These values can be used to guide the program instrumentation process. Our

algorithm animations should thus aim at depicting events that can be collected at this frequency.

Based on the clear need to animate algorithms at a higher level of abstraction, the next

chapter outlines an new direction for AAARF development.
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VIII. A new direction for AAARF development

8.1 Changing Requirements for Parallel Animation Systems

From the analysis of trace volume in Section VII and the development cost of application

specific displays, it is apparent that a new approach to algorithm animation must be created.

This section outlines a new model for future AAARF development. The ideas presented here

have been developed based on experience gained while using and developing the AAARF system,

from associated literature research and experimental use of other animation systems (Pablo (62),

Paragraph (28), AIMS (57), and ParAide (27)).

From the analysis in the previous chapters, it is also readily apparent that parallel algorithm

animation systems currently available fall short of real user requirements. This is most noticeable

when the current papers are reviewed for examples of effective employment of these systems on

real world problems. Without a notable exception, virtually all reported usage of these systems is

by their development team on pedagogical examples. While from an educational perspective these

are valid and important applications, it is vital that these tools also support main stream software

development. It has been made apparent from Parallel Application and Algorithm Group (PAAG)

meeting discussions that researchers at other Wright Patterson AFB facilities make virtually no use

of these types of systems. There would appear to be four major problems with current animation

systems that lead to this low usage:

An inappropriate level of observation for observing algorithm level characteristics. Apart

from the basic problems of trace data volumes, the system level event tracing is actually not

as applicable to the development cycle as first envisaged. Observing generic animations for

a particular execution is effectively the same as watching the instruction flow without seeing

the data on which it is based. As a result, the reasons for particular behavior cannot be

evaluated by the user. This forces development of application specific displays for virtually

all serious applications.
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" The inability to debug non terminating or incorrectly terminating programs. Nearly all current

animation systems require the program to gracefully terminate to allow the data collection

system to finalize collection of recorded event data. Since they provide no execution control

of the program under examination, finding implementation errors is virtually impossible. A

debugger such as IPD (38), the interactive parallel debugger, is far more appropriate for this

application.

"* Difficult to apply to real optimization activities. Optimization of a program's execution is often

cited as an application of animation systems. While useful from a pedagogical perspective, it

is ineffective on real problems. Most research in parallel computing today requires that this

optimization activity-focus on register and memory allocation, file I/O, and hand tuning of

program kernels. With standard routines for message passing operations such as exchanges,

the level of observation provided by animation systems is too coarse. In particular, when

the level of observation is reduced to examine these parameters, the intrusion caused by the

instrumentation becomes unacceptable.

"* Complexity of trace collection and animation system. Since to gain any real benefit from ani-

mating a user's program, he/she must employ application specific displays, the work required

is significantly increased. In virtually all systems currently available (the only notable excep-

tion is Pablo) this requires a significant amount of programming. Faced with this prospect.

it is not surprising that it is not often pursued by the user.

Thus for real benefits to be gained from animation systems, high level algorithm displays

must be generated. However, current systems focus mainly on low level system events. This leads

us to two basic questions for current animation systems:

1. How do we reduce trace volume? This would appear to force the development of high level

algorithm animation with composite type events, relegating current visualizations to limited

debugging and optimization of very small code segments in an educational type environment.
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Figure 34. Proposed Instrumentation Environment

2. How do we eliminate the need for lengthy development of application specific animation for

high level algorithm events without loss of capability? This directs research into the develop-

ment of interactive tools/environments for animation building rather than the development

of specific displays. This is more in line with standard data visualization such as Explorer

(75).

These two points provide the focus for the proposed animation environment model. The

following section outlines the major components of the proposed system. The section discusses both

the overall philosophy behind the development and the importance of the individual components.

A block diagram for the proposed system is shown in Figures 34, 35 & 36. The proposed model

includes the following important characteristics:

"* Architecturally independent self defining event tracing.

"* Top down hierarchical trace resolution.

"* User defined and configurable event filtering.
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8.2 Architecturally Independent Self Defining Event Tracing

Animation requirements have tended to vary from user to user and application to application,

as a vast array of event types have been defined for parallel event tracing. While some of these

events remain relatively static, i.e message passing, the content of higher level trace markers vary

considerably. Even the flexible event markers available in AAARF (84) were restrictive in that

mixed type information could not be stored as a single event. In many other systems the size

of events is limited. This has led to obsolescence in event formats as the needs of the user have

changed over time. The only effective solutions to this problem are to implement a self defining

event format, or basic events that can be grouped during analysis. These approaches restrict neither

the event contents or size, while still allowing unique identification.

The main advantage of this approach is the ability of the user to create new events based on his

particular requirements. This is ideal for the development of application specific animations since

it can capture the contents of complex data structures used by the program under examination.

This has been the successful approach adopted by the Pablo system and subsequently included into

the Paragon (39) OSF operating system. While significant scope for improvement in the actual
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implementation of the trace format is possible, its adoption by Intel creates a pseudo standard.

With AFIT's likely strong relationship with the Paragon system, our future developments must

take advantage of the Pablo event format.

It is very likely that the user of an animation system would be daunted by a completely flexible

event format and the semantics of its construction. The subsequent decoding of its structure and

mapping of data values to objects on the animation displays would also be difficult. To alleviate

this problem while allowing for the flexibility of composite events, the prototype implementation

outlined in Chapter IX uses single valued events. The user simply inserts the required number of

single valued events to construct a composite event. The additional cost with this approach is that

tracing overhead is increased along with the requirement for storage of additional time stamps.

8.3 Hierarchical Trace Resolution

The problem of trace data volume continues to limit the detail that can be displayed for

any reasonable execution period. This does not however, eliminate the need for low level system

event tracing in some situations. To provide the best of both requirements, the event tracing

must be arranged in layers so that the user is able to vary the level of detail. For example, an

abstract display for a parallel discrete event simulation may provide a run time display showing

only the lowest time stamped message in the system. If however, the simulation appears to not be

progressing, the trace level could be decreased to depict the contents of the individual messages.

For the reason outlined in Chapter VII, this must actually be the enabling of detailed tracing,

not simply the presentation of previously un-displayed data. To always have the tracing system

enabled would place an intolerable overhead on execution. This is often referred to as a top down

approach to instrumentation. In the top down approach, we only collect what is needed at that

particular level and increase trace detail only when required. The alternative approach used by
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nearly all current systems is the bottom up technique. With this technique, a detailed event stream

is filtered and events combined to provide high level displays.

Hierarchical trace resolution could be achieved by allowing the user to establish ordered sets of

event classes and as events are inserted into the program, or created by the user, they are assigned

to these classes. The user would then be provided with selections that allow him to zoom in and

out on the event resolution, by enabling or disabling event classes. This system could be as flexible

as required with low and high level events being combined into particular classes to meet specific

requirements.

In addition to implementing hierarchical event classes, the individual events would be assigned

a collection frequency. This frequency could be determined from program parameters, or a simple

counter, to ensure that data structures that experience frequent updating do not produce excessive

event data. An interesting alternative would be to allow the user to select a specific level of

tracing overhead and allow the system to adapt to maintain this level. In this situation, the

instrumentation system could track trace data volume at the node and reduce the reporting rate

to meet requirements.

8.3.1 Self Adapting Event Tracing. It would appear to be a desirable property to allow

the tracing system to adapt to user requirements by self adjusting the trace level. It is often

difficult to determine the rate at which particular data will be generated and in some cases, this

rate can vary greatly during different phases of execution. Particularly in cases where dynamically

allocated data structures or object based programming techniques are utilized, the actual volume

of data required to capture a particular event can vary dramatically. In these cases, a self adapting

system could ensure that data generated never exceeds some fixed ceiling. A particular node could

store the average number of trace data bytes per unit time and modify the trace capture frequency

accordingly to meet user specified requirements.
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8.4 User Defined and Configurable Event Filtering and Transformation

While it is possible to produce a variety of displays capable of depicting every event, this

is not always the most usable format for the data. This approach has lead to current systems

including extensive menus that allow different aspects of events to be examined. This approach

was reasonable when events were strongly typed, however, this method is poorly suited to handling

flexible event types. To compensate for this and to provide user flexibility, lacking in many present

animation systems, an interactive event filter capability is proposed. This technique has been used

in the AIMS (57) system to great effect.

The approach proposed would require a user interface that allowed the building of filter

operations in an interactive manner. The event types generated by the user would be presented

in a pull down menu and, using techniques often used to specify data base searches, a filter could

be composed. The filter would not simply be limited to selecting particular events but should

allow combination, min and max detection, averaging and other statistical techniques, translation,

scaling, bound checking and other appropriate operators. The resulting code module would then

accept events in real time and pass them to one of the many display objects.

A good example of this concept is the Explorer data visual system (75). This system provides

a selection of graphically composible objects that can be used to produce a specific data transfor-

mation for data visualization. The development of a pick and place type environment would be an

essential feature.

8.5 Integrated Multidimension Data Visualizer

As the complexity of programs in daily usage continues to increase, determination of progress

and state parameters becomes more difficult. This is particularly true when algorithms manipulate

data that relates to some multi-dimensional problem space. In these situations, visualization of

partial results becomes increasingly important. This can be particularly important in optimization
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activities, simulation and modeling of real world phenomena. It is thus important to provide as

part of the visualization environment, an interface to a state of the art data visualization tool.

Recent discussion by researchers from Oak Ridge National Laboratories and other research

organizations, at the Intel Supercomputer meeting (36) highlighted the lack of adequate tools in this

area. The problem is not directly related to tools that can generate the displays, but the utilities

required to gather the data for the presentation system. In the MIMD type machine examined as

part of this research, the data to be visualized is often scattered across multiple processing nodes.

Currently only limited data gathering utilities are available for construction of multidimensional

displays on parallel processing systems.

The opportunity exists for the self defining trace events to be used to define events that can

gather distributed display data. The events containing the data could be decoded using the user

configurable filtering system and piped directly to the visualization tool. The visualization tool

would not be constrained to any particular type since the adaptable filtering could produce data

formats compatible with a range of visualization systems. Three dimensional diagrams depicting

partial solutions or system progress could then be constructed and adapted to meet user monitoring

requirements.

This technique is also useful when analyzing lower level statistical information. The most

relevant would be message volume distribution. It is relatively easy to simply count the messages

on each communication channel without recording any specific time or semantic information. The

distribution could then be displayed on a two dimensional grid as implemented in the AIMS system.

The grid type displays in AIMS are generated by Explorer (75).

8.6 User Specified Interactive Graphical Display Builder

The most limiting aspect of AAARF and a problem also inherent in the AIMS (57), PICL

(28) and other systems is the lack of flexibility in display format. Each variation in display format
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Figure 37. Mesh Processor Animation from PIOL

must be implemented by directly writing graphical calls to an Xwindows widget set. While widget

support is available for the development of user interfaces using panel, buttons, menus etc, similar

libraries are not well suited to algorithm animation.

A classic illustration of this is when producing a simple activity display for processor nodes.

For example, we may want to represent each processor as a circle on the display with the color

representing a variable on that processor or simply the processor state (active/idle). The animation

display shows a similar type display with the processor displayed in a ring (see Figure 38). In this

case, the color only reflects activity. If the processors are actually configured as a mesh code

for a completely new display, procedures must be developed as shown in Figure 37. The menu

buttons for its selection must be added to the control panel as with any required parameter such

as aspect ratio. This approach is implemented in PIOL (28) and as a result they have coded 10

different arrangements of processors (see Figures 38 & 37). This however, still leaves the problem

of monitoring a different parameter not simply idle or active. In this case, the code section that

generates the display must be duplicated and the displays modified to accept a different event type
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Figure 38. Ring Processor Animation from PICL

and color coding key. The limitations of this approach are painfully apparent. The problem does

not end here however, as frequently further abstraction is required.

When a problem is decomposed onto a parallel system, the actual activity of a large number

of nodes becomes difficult to determine. Clustering of related activities and similarity of tasks often

results in the individual activity of each processor becoming less important to visualize. Thus it

is frequently desirable and often essential on large systems, to abstract the behavior of individual

processing elements. Under this situation, the max, min, average or some other summary form can

be used to represent the activity of a group of processors. At the same time, particular nodes may

warrant individual attention. Thus, while we can produce displays that represent the processors

in arbitrary configurations, this is not flexible enough for the majority of applications. This is

particularly relevant as the number of processors increases. For example, a search conducted using

2800 node on a Paragon system using 50 nodes in tree type control structure with the remaining

nodes acting as workers, would not fit a standard display format easily. Even if it was coding a

particular, display using a template type approach would still be a significant task.
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1. High Level Interface. The animation tool must allow a pick and place type user interface with

a palette of standard animation primitives. A frame representing the final display would be

manipulated by the user to add basic animation objects and reconfigure their location.

2. Animation Objects. The system should contain a library of basic building blocks such as

scrolling bar, colored circles, interconnecting lines and other frequently used graphical ob-

jects applicable to algorithm animation. The user must also be able to generate new basic

components.

3. Assignment of State. Each defining parameter of the animation objects must be accessible

and definable to the user. For example, parameters such as size, location and color must be

controllable, then allowable states for the characteristics of the graphical objects could be

defined. For example, a line could be visible or hidden.

4. Assignment of Events. Within this environment the event types would be interactively as-

signed to defined graphical objects. The data fields in the event would be presented to the

user along with range boundaries. The individual fields in the events would be assigned to a

particular parameter of one, or many graphical objects. A simple example would be a partic-

ular event containing an integer array which could be assigned to a display containing a bar

graph animation. The events could also be used to initialize or highlight particular display

format.

5. Animation Library. Once the displays have been developed they could be stored in a domain

specific library, with the definitions of any unique event types for possible reuse.

The basic ideas presented in this section have been incorporated into an experimental pro-

totype outlined in Chapter IX. While this has been incorporated into AAARF to facilitate rapid

development, the code has been developed to allow construction of a replacement framework for

AAARF components of the design.
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8.7 Pseudo Real Time Display Presentation

As discussed previously, the input/output capacity of parallel systems is likely to remain

a serious constraint. Any improvement could be easily consumed by the requirements of large

applications, the majority of which are I/O bound for disk access outside node network. As a

result, the detailed low-level real-time event tracing provided by AAARF is likely to consume too

high a percentage of this resource. This does not however, limit tracing of events that produce

lower data volume.

For most large applications only high level event tracing is likely to be possible. Under these

situations, the number of events generated can be significantly limited. For example, a particular

program variable could be reported once every ten minutes in extended execution with only limited

impact. For this reason, pseudo real-time animation remains an important feature of the new

animation system. The most important application area is related to long execution time where it

can be used to determine:

"* if a program is still executing,

"* if progress is being made,

"* the quality of partial results,

"* the execution pattern, and

"* its compliance with execution constraints.

These aspects are becoming increasingly important as larger problems are attempted, con-

suming hundreds of computer hours. Under this scenario, the early detection of problems that do

not cause termination, but produce invalid solutions or infinite execution is vital. The information

presented could be as complex as three dimensional rendering of images or as simple as basic bar

charts. This is often implemented with programs dumping partial results to file for subsequent
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display. While this is sufficient for many applications, the flexibility provided by user interaction

outlined in Section 8.8 provides some further advantages not possible with this approach.

8.8 Pseudo Real Time User Manipulation of Algorithm

With the majority of parallel animation systems, tracing level and execution parameters are

determined prior to execution. Once execution has commenced, these cannot be altered until the

program is rerun and often must be recompiled. AAARF and PICL require this for some trace

parameters.

If the pseudo real time displays are used effectively, insight into the execution of the program

might highlight aspects of the execution pattern not previously considered. In addition the progress

made by the program might highlight an appropriate change in a data value. An example of this

might be mutation rate in a genetic algorithm program. For short executions the program could

simply be rerun but on larger systems with huge execution times, this may be ineffective. The

approach proposed here would be applicable to programs where the cost of re-running the program

completely would be prohibitive. Under these situations, the ability to change both the trace

level and particular data values or structure would be an advantage. While the technique of

check pointing a program's execution is often used to allow restart, it has limitations. Often the

information required by a parallel application consumes a high percentage of the total available

storage capacity. In these cases, frequent check pointing is not possible due to the amount of data

that must be stored to retain the system state. In this situation, visualization can be used to

determine if the current program state is valid and the previous checkpoint replaced by the current

state.

To allow user input, the node processor must be capable of receiving messages from the

display system. The instrumentation software would need to include additional code to check for

messages from the display host. All defined events, either currently enabled or not, would check
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incoming message queues for any message relevant to themselves. This could be implemented using

a reserved message type. The trace events could in this way be enabled, if later in the execution

it was required to investigate unexpected behavior. A hard disable could also be included or a

checking frequency defined to reduce the effects of the resulting computational overhead. In this

case, data that was instrumented but too costly to output to the display device could, from time

to time, be enabled if further analysis was required. A similar approach could be implemented to

allow modification of data structures and values. The self defining event type would ensure correct

casting of both the sent and received data.

This would be the most unique aspect of the proposed system and would require co-operation

from vendors to allow enhancement of the tracing code. The following pseudo code for an event

tracing routine outlines the concept.

Trace Event Code Segment.

Procedure Event'Marker(Event'Type, Trace'Parameters)

static CHECK'ITERATION, RECORD'ITERATION: Integer;

Begin

if not HARD'DISABLED do

Begin

CHECK'ITERATION:= CHECK'ITERATION + 1;

if ITERATION=CHECK'FREQUENCY and Probe(COMMAND'MESSAGE)=TRUE

Begin

Switch COMMAND'MESSAGE.type

Set'Disable:

ENABLE : False

Set'Enable:

ENABLE :=True;

Set'Hard'disable:

HARD'DISABLED := True;

Set"Check"frequency:

CHECK'FREQUENCY:- COMMAND'MESSAGE.data'value:

Set'data'value:

Trace'Parameters:- COMMAND*MESSAGE.data'record;

Set'record frequency:
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RECORD'FREQUENCY:= COMMANDMESSAGE.data'value;

Setterminate:

TERMINATE -= True;

End

ITERATION:= 0;

endif

RECORD'ITERATION:= RECORDITERATION + 1;

If FNABLE =True and RECORDITERATION = RECORD'FREQUENCY

Begin

Buffer(Event'Type, Trace'Parameters);

if Buffer = FULL or TERMINATE = True

Begin

Send(Buffer) to I/O processor;

End

RECORD'ITERATION:= 0;

End

endif

End Event Marker;

8.9 Portable Animations on High Performance Graphical Workstations

As both the speed and size of parallel processing systems increases, the requirement for

higher resolution and display update rate increases. In particular, the animation speed of the

current AAARF system is dictated by the graphics capability of the Sun workstation. For this

work to continue, use of higher performance display systems is required. In the case of current

AFIT research, the graphical capabilities of the new Silicon Graphics machine should be utilized.

8.10 Can this be Achieved by Further Upgrading of the AAARF System?

Considering these requirements, the basic framework of AAARF has reached the limits of

its extendibility. While the concept of user configurable, or adaptive animations was investigated

within the AAARF framework, AAARF cannot support incorporation of all proposals. Continued
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developmevt of the current AAARF system would require at least the following items to achieve

the additional requirements outlined in Section 8.1:

1. Porting of the system to the Silicon Graphics machine.

2. The complete rewrite of the unsupported SunView (80, 79) graphical display code.

3. The conversion of the XView (30, 61) menu framework to be Motif compliant (56).

4. Complete replacement of the trace data collection system and subsequent processing format.

This constitutes a significant undertaking especially as the third task alone required a com-

plete thesis cycle when originally converted from SuvView to XView (86). This is not however,

the major reason for replacing AAARF with a second generation animation system. The AAARF

system has two characteristics that, while shared by the majority of current animation systems, are

incomparable with the proposed direction of future research. Firstly, its animation capabilities are

directly tied to the data casting of the Prase data collection software. This forces every event to

be cast as an identical record type irrespective of the information required. With future research

beginning to focus on the Intel Paragon (39) the move to self defining event types will be required.,

making the single event record type redundant. Secondly, AAARF's code based animation building

technique is poorly suited to adaption to an interactive graphical display builder type system. The

AAARF system was designed to associate animations with a particular algorithm class. Within

this framework, a unique control panel, event decoder, display menu. status panel, and presentation

parameters panel must be built. This requires the customizing of five application specific AAARF

program files before even the first animation is constructed. While the work on adaptable displays

discussed in Chapter IX was developed within this framework, it remains too restrictive for full

scale development of interactive animation building tools.
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8.11 Summary

A model for future parallel algorithm research at AFIT has been developed. It cannot easily be

implemented within the framework of the current AAARF implementation. To take full advantage

of progress made by commercial organizations and other researchers in this area, the development

of a new generation of visualization systems must be undertaken. The rapid progress made in the

development of parallel processing systems changes many of the underlying principles on which the

previous systems were based. Processor speed and the sheer magnitude of new systems continue

to challenge the developers of animation systems. The concept of user definable displays is further

developed in Chapter IX.
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IX. Adaptable Displays for Application Specific Animations

9.1 Introduction

This chapter outlines experimentation with adaptable display configurations for application

specific animations. The prototype system developed here reduces parallel algorithm animation

to its most basic components. By assuming the use of a single event type, the user can build

application specific displays without requiring code generation. In particular, the user is able

to develop arbitrary display formats to meet any animation requirement. This work has been

undertaken within the basic framework of the AAARF system. For development of application

specific displays with both AIMS, and Paragraph the user must modify components of both the

instrumentation and the graphical display software.

9.2 Design Concept

The basic approach employed by this design is to provide configurable animation displays that

rely on: a set of graphic object primitives (frame); a single event format; an event map; and set of

a statistical operations. This approach provides the maximum flexibility and imposes only trivial

requirements on data collection formats. A single event type has been utilized to both simplify

implementation and provide users with less complex instrumentation procedures.

The system operates by the user specifying a frame format based on a set of graphical objects.

For each of the parameters associated with that graphical object, the user assigns its initial values.

This defines the static configuration of that display. The user then maps individual event types to

particular parameters, or sets of parameters on one or more graphical objects. For each mapping

the user then define,- a particular operation type to be applied when updating that particular

parameter. For example, the actual data value can be used directly or transformed by scaling,

averaging, summed, counted, max, or other mathematical operations. For each frame of objects,

the manner in which it is to be updated is also defined to allow scrolling and other operations on
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Figure 40. Mapping of Event Data to display Object Parameters

object sets. The event mapping procedure is depicted in Figure 40. A block diagram of the adaptive

display environment is shown in Figure 41. This figure clearly shows how the display definition file

specifies the graphical animation. The additional maps, methods, and transforms define the effect

incoming events will have on the display.

9.2.1 Event Types. The use of only a single event type actually provided significant

benefits in both implementation and ease of use. The AAARF IE(type,datal,data2) event type

was used to allow collection of trace data. No other event types are utilized for adaptable display

frames. Other event types can, of course, be inserted to provide data for other animations. The

actual user format for the event is simply:

IE( (int)TYPE, (boolean)COMMAND, (float)data.value)
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Figure 41. Overview of the Adaptive Display Generation System

The TYPE is used along with the node id number to uniquely identify the event to the

event map. The data-value is then used to update the parameters to which it is mapped (note, an

operation on the data-value can be specified). The COMMAND field (boolean) is used to specify

that this event should cause the display to update the graphical object. This allows a number of

object parameters from a set of events to be updated as a single action.

9.2.2 Graphical Objects. This implementation provides basic graphical objects for dis-

play including, Dots, Rectangles, Text Messages, Circles, and Lines. However, since these can be

composed in any manner and stored for reuse, definitions of complex composites can be easily

constructed. An object based approach was taken in this implementation and the user has access

to the attributes shown in Figure 42. Note: The array of scale, log scale, and offset values provide

static translation of the object's attributes.

9.2.3 Frame Specifications. The frame specification allows the users to specify how the

objects on the display are actually updated. The options available are:

9 S-NONE: All updates and written directly to the display.
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Figure 42. Object Diagram for Adaptive Display Frames

* SYFULL: Clears previous display and redraws all valid objects.

* SSCROLLLEFT-ONTIME: Scrolls, to the left, a user defined percentage of the display

frame, based on specified duration.

* SSCROLLDOWNON-TIME: Scrolls, down, a user defined percentage of the display frame,

based on specified duration.

* S-PARTIAL: When updating display only erases and redraws updated graphical objects.

* SUPDATEONEFFECT: Only redraws the display on arrival of a specified event.

* SCLEAR.ONEFFECT: Clears the old display on the arrival of a specified event.

* S-SCROLL-LEFT.ON-EFFECT: Scrolls, to the left, a user defined percentage of the display

frame, on arrival of a specified event.
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* S-SCROLLDOWN.ON-EFFECT: Scrolls, down a user defined percentage of the display

frame, on arrival of a specified event.

Full updating simply clears the last display and re-draws all valid and active display objects

associated with that frame. If partial updating is specified then only display objects that have a

valid updated flag are erased and redrawn. The COMMAND flag is used to set the update object

flag when a parameter is updated. Thus, to use block updates PARTIAL mode must be used.

The scrolling options operate with a scrolling width parameter that is also associated with the

frame. Under this method a section of the display (specified by the scroll width) is translated

across the display in the direction of the scroll. Under this approach graphical objects are specified

for only part of the display and their previous values are shown in the remainder of the display. The

scrolling action can be triggered based on execution time, or on the arrival of a particular event.

The update on event option clears the current view on arrival of a particular user defined event.

If the no updating option is selected, new images are drawn over the previous display. Further

information is contained in the AAARF User' Guide (58)

9.2.4 Event Mapping. A two stage mapping o. its to display objects and parameters

has been implemented. The mapping process is depicted in Figure 40. When an interesting event

(IE) is processed by the animation system, the event type and recording node id are used to

determine an effect number for that event. Utilizing both the node id and the event type allows

events from different nodes to be mapped to the diffeient objects. The effect number is then

mapped to a set of object parameter pairs. These pairs represent particular objects and parameters

to be updated with the data value from that event. The object parameter pair is also used as

the index into the operations map. To allow a number of parameters to be updated before the

object is actually redrawn on the display, an updated flag is included in the object structure. The

COMMAND value is loaded into the updated flag when a parameter is actually updated by an

event.
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9.2.5 Operations Mapping. Mapping events to object and parameter pairs is only the

initial stage in updating a particular object on a display. The way in which the actual value stored

in the received event effects the object can be defined by the user. For example, it could be used

directly to map to the height of a rectangular display object, or the height could simply reflect the

average value of all events received. Note: Scale and offset factors are automatically associated and

applied to each parameter. The direct approach is often very useful but additional capabilities are

required. The operations map allows the user to assign to an object parameter pair, the method

to be used to update that particular parameter. The operations provided by this implementation

are:

"* Direct - Updates the parameter directly with the scaled and translated data value.

"* Max - Updates parameter directly with the scaled and translated data value if it was greater

than the largest previously received value.

"* Min - Same as max but retains only the minimum value received.

"* Count - Updates the parameter with the number of that type of event received to date.

"* Sum - This operation updates the parameter with the summation of all event data values

received.

"* Average-Time - Updates the display with the average value of data-values received over a

specified time.

"* Count-Time - Updates the parameter with the number of that type of event received over a

specified time period.

"* Reset-on-event - This operation allows the arrival of an event to clear the current values of

count, sum, and average. The current display value is maintained at its last value before the

reset operation.
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Figure 43. Event Processing and Display Control

* Reset~to~zero..on..event - This operation also clears the current values of count, sum, and

average. This particular operation resets the current data value to zero.

* Time..Events - This operation allows the time between occurrences of events to be mapped

to a display object.

The animation system uses the array dispiayAdata.store[object][parameter] to store data re-

quired to allow evaluation of these functions (Figure 43).

9.2.6 Specification File. The adaptive displays are constructed by the user specifying the

required objects in an ASCII file. The file can contain the definitions of up to four different display

frames. This upper limit is not fixed and simply reflects the current number of programmable

menu buttons on the AAARF control panel allocated to adaptable displays. The file is normally

read only at initialization of the adaptive display class. At any time a new definition file can be

specified and subsequently loaded by selecting Reset. As the file is read, the frames assigned by the

users to the particular display formats are allocated to menu buttons on the control panel to allow

particular frames to be displayed. A discussion and specification of the file format is contained in
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Appendix A. Users of the system should consult the AAARF User's Guide (58) for more detailed

information.

9.3 Applicability of Approach

The approach in this chapter provided some promising results. The speed at which new

displays could be constructed, even without an interactive interface, was most encouraging. For

example, the simple state based animations could be constructed in under two hours. The major

strength with this approach is the single event type. This not only reduces the complexity of

the user design task, but also makes the instrumentation process more straight forward. This is

achieved without limiting the construction of more complex events from these basic forms. From

this work it became apparent that basic building blocks provided here could be used to construct an

equivalent display to every format so far encountered with parallel animation systems. Achieving

this without coding and by utilizing only a single event format is a significant reduction in animation

construction complexity.

The approach taken is similar to that of Pablo. Under Pablo the user is supplied with a

number of fixed display formats: i.e Bar Graph, Chart, Dial, and many others. The user then

defines how complex event types are to be mapped to the variable characteristics of that particular

display. This functionality is then aimed at examining low le\ I and system performance aspects

of the program's execution, for example, average MIPs values per processor. Development of other

abstract displays requires coding. Under the approach outlined in this chapter, we allow greater

flexibility in display formats withiout resorting to coding. The event data we aim to capture, in real

time if required, would focus on the algorithm performance and less on system parameters. This

level of observation requires more specialized displays built for particular application programs.

Thus our design benefits from allowing specification of both the display format and the event

mapping without coding.
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Since our displays are built on a very simple event type, our data collection requirements are

independent of specific hardware or software architectures. This should allow analysis of data from

diverse sources, ensuring portability. This prototype implementation does not include interactive

interfaces and other components required for easy user construction of displays and event maps,

however, it does provide a basis for such work.

9.4 Summary

This chapter has outlined a versatile approach to application-specific animation generation.

This approach frees the user from many of the problems with current visualization systems and

appears to provide flexibility to meet most animation requirements. In particular, we are able

to construct complex application specific animations without requiring code development. The

requirements generated by parallel program design and system hardware are changing too rapidly

for fixed format display, no matter how scalable. The regularity inherent in the majority of parallel

program implementations must be utilized to provide abstraction of uninteresting detail. This

can only be achieved by providing the user with the ability to construct displays tailored to his

particular application. The flexibility provided here meets this requirement by ensuring that the

animation system software remains independent of both the hardware system and the software

under examination. In this design the development of application specific displays and event formats

can be achieved without code generation.

The following chapter demonstrates how this environment can be utilized to meet real ani-

mation objectives. In particular, the animation environment is applied to generation of application

specific animation for evolutionary algorithms.
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X. Animation of Evolutionary Algorithms

10.1 Introduction

Evolutionary Algorithms (EA) are powerful and widely applicable search and optimization

techniques based on principles from evolutionary theory (54). There exist many variations of the EV

principle and these include, Genetic Algorithms (GA), Evolutionary Strategies (ES), Evolutionary

Programming (EP), and Genetic Programming (GP) (54, 32, 48). All of these techniques can be

viewed as variations on a basic heuristic approach that share common implementation mechanics.

This chapter specifically examines the development of visualizations that directly support GAs

(26). However, the similarities between various types of EAs allow the basic techniques developed

here to be applied to all GPs, ESs, and, EPs. Use of the prototype adaptive animation extensions to

AAARF, discussed in Chapter IX have been made. This section clearly demonstrates how effective

animations can be developed using this adaptive animation environment.

10.2 Genetic Algorithms

Genetic algorithms are highly parallelizable, robust, semi-optimization algorithms of poly-

nomial algorithm time complexity (26). These algorithms have been applied to a wide range of

optimization problems and constitute a significant area of parallel algorithms research at AFIT

(52, 6, 15, 73), and the scientific community at large.

10.2.1 Genetic Algorithm Research at AFIT. A genetic algorithm tool-box has been

developed at AFIT to explore the capabilities of genetic algorithms. The tool-box has a sequential

version implemented on the Sun 4 workstation, and a parallel version implemented on the Intel

iPSC/2, iPSC/860 Hypercubes and the Paragon. To dat, Fi, .-tion optimization applications using

both standard and messy (52) genetic algorithms have been parallelized (15, 73). This work is

based on the significant achievements by many researchers (26, 25, 66).
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10.3 Overview of Genetic Algorithm Characteristics

The purpose of the genetic algorithm is similar to that of the mission routing A* algorithm.

The GA approach is simply a probablistic approach to finding an optimal solution to an opti-

mization problem. Whereas the A* algorithm uses a deterministic search technique to determine

a solution, the GA algorithms uses a guided random search technique. In a genetic algorithm

solution technique, string representations of complete or partial solutions are manipulated based

on the mechanics of natural selection and natural genetics, the aim being to optimize an objective

function. The objective function models the problem to be optimized. This function is defined in

terms of the solution strings and can be used to evaluate the relative quality of solution strings.

The genetic algorithm searches the solution space by evolving a set of solutions. This initial

set of solutions is generated randomly or based on domain specific knowledge, and is referred to

as the initial population. Each new population generated is evolved using three basic operators;

mutation, crossover, and reproduction (26). Thus the GA search process involves generation of new

populations based on the current population. Each new population is referred to as a generation.

Solutions are reproduced in later generations based on their quality as evaluated by the objective

function to be optimized. The basic step of the genetic algorithm search process are (26:63).

1. Create initial population.

2. Create new population by applying:

"* Selection (Based on fitness).

"* Mutation (Based on defined probability).

"* Crossover (Based on a defined probability).

3. Repeat 2 until termination criteria is satisfied.

The termination criteria is completely flexible and may be based on time, number of genera-

tions, a variance of solution fitness, a solution quality figure, and many others.
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10.4 Parallel Implementation of Genetic Algorithms

The basic genetic algorithm and its many variations are ideally suited to parallel implemen-

tation. Parallel implementations vary in the method used to distribute populations and evaluate

generations. The most common parallel implementations involve the:

"* Island model,

"* Cellular model, or

"* Deme model (globalized).

In the island model each processor is given a separate population, and evaluation of fitness,

selection, mutation, and crossover are all performed on the local populations. In the deme, or

globalized model, the schema on a number of processors are considered to form a population and

in the extreme form, a single population. The distribution of an individual population on a cluster

of processors is often referred to as the cellular model (52). In the global model the selection,

evaluation, and then genetic operators are applied to distributed populations. The inclusion of

schema migration probabilities allows further flexibility in the implementation. Schema migration

allow strings to move between populations based on user specified criteria. This promotes sharing

of genetic material between populations and can be implemented in both the basic approaches.

10.5 Application of Standard Parallel Visualization Tools

The insight provided by standard application independent visualizations is greatly dependent

on the parallel implementation used. If the island model is used without migration, then indi-

vidual processors do not communicate and the displays depict little interesting information. This

results directly from the generic animations being based entirely on message traffic information.

Once global evaluation, or schema migration is included, then resulting inter-node communications

provide events that produce meaningful animations. The following sections outline characteristics
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Figure 44. Schema Distribution for PSGA

of genetic algorithms that can be analyzed using standard visualizations included in the AAARF

system (84).

10.6 Task Management

To effectively and efficiently map the GA to the target system, the combined effect of a

number of characteristics must be considered. This can be generalized as task management and

deals with partitioning, load balancing, and task scheduling.

10.6.1 Communications. If a global or cellular implementation model is used, then

communication is required to perform the selection process. If schema migration is used, then the

communication patterns generated by the distribution of solution strings can also be analyzed.

The Feynman and Communication load displays (84), can be used to examine the effects of this
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communication. In particular, examination of the mapping to the processor architecture and the

resultant message channel delays would be of interest.

The parallel genetic algorithm programs used at AFIT currently only include island model

implementations, with schema migration (PSGA) (52). The Feynman diagram shown in Figure

44 highlights the importance of applying visualization to determine the effect of communication

patterns. Figure 44 shows the effect of using the broadcast communication primitives to distribute

schema between processors. A simpler ring based communication pattern would be the obvious

alternative to this expensive original approach. The contention for communication channels signif-

icantly extends the transfer time. The displays can also be utilized to effectively analyze the global

selection and evaluation process. Note that this animation is unable to commui.cate anything

about the relative quality of migrating schema since basic animation events cannot record the data

structure that constituted the message. Since this level of instrumentation cannot decode message

traffic the quality, number, and characteristics of the shared schema is hidden from the user.

10.6.2 Examination of ')ad Balancing. In the current implementation of PSGA the

activities of the individual processors are synchronized. This synchronization occurs after every

so many generations with schema being shared between processors. However, this is not the only

possible implementation and totally asynchronous implementations are used. With implementa-

tions that allow variable length schema and various population sizes, load imbalance can occur.

This can be compounded if a centralized controller is used to distribute schema and populations

dynamically. Under these situations the Utilization display (85) can depict this imbalance. The

addition to the status panel of current generation information for each processor, permits global

progress to be examined on a gross scale.

10.6.3 Examination of Computational Phases. The use of the computational phases

display can assist in determining program profile information. In the case of the genetic algorithm,
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the regular nature of the computation phases provides simple analysis. The phase/task timing

display (9) allows the computation cost of each phase to be examined.

10.7 A Need for Application Specific Displays

While standard displays provide some insight into the execution of genetic algorithms, much

of the important information is obscured from the user. Information relating to program progress,

solution quality, and other criteria are contained in the data structures manipulated by the genetic

algorithm. To expose this information, we must analyze and display these data structures. In the

case of the genetic algorithm, we are concerned with the types of schema in the distributed popu-

lations and general characteristics of these populations. This information can only be captured by

implementing interesting events that record these data structures during program execution. The

displays developed are also applicable to other evolutionary algorithms since the data collection

system records fundamental program characteristics common to many evolutionary algorithms, in

particular, the results of string evaluations, population size, and schema sharing between popula-

tions. The instrumentation approach taken assumes only minimal application program capabilities,

basing most animations only on string fitness evaluations. This approach allows for implementa-

tions that don't evaluate other population parameters.

10.8 Analysis of Important Genetic Algorithm Trace Information

Control structure event tracing is provided by the standard PRASE (42) instrumentation

suite. To provide execution tracing for data structure information, Interesting Event (IE) markers

are included in the target program. We can consider the state of the genetic algorithm to be defined

by the characteristic of the current generation (26). For each generation of a single population the

important statistics are:

* Average population fitness.
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"* Variance in population fitness.

"* Max and Min population fitness.

"* Number of Mutations.

"* Number of crossovers.

"* Number of a given schema type.

"* Sum of population fitness.

"* Population size.

"* Number of schema types represented.

"* Average schema length.

The variable length schema are important in rule based GA systems where string length is

also adapted as part of the search process (54). When extended to a multiprocessor environment

we produce a number of sub-populations. Dependent on the implementation model, schema may

or may not be transported between sub-populations. In addition to the parameters in the above

list, the values of these parameters across all populations are also valuable. Information about the

migration of schema between these sub-populations also needs to be depicted. This allows the mon-

itoring of interaction between sub-populations and the analysis of different parallel implementation

models:

"* Single population statistics for each population.

"* Number of migrations.

"* Characteristics of migrating schema.

"* Combined statistics for all populations.

Based on the requirement to analyze these execution parameters the following section outlines

the instrumentation requirements.
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10.9 Data Collection Requirements

To provide graphical representations of the important characteristics listed in Section 10.8, a

significant amount of data must be recorded. In addition, the variety of algorithm types likely to be

instrumented, eliminates direct recording of values for such statistics as population diversity and

other characteristics that are not normally calculated during execution. Since many evolutionary

algorithms use variable population sizes and schema lengths, even recording of a single generation

evaluation is difficult. The common denominator between all evolutionary algorithms would appear

to be the evaluation of string quality. This particular calculation usually results in a single quality

value for a particular solution string. By recording these evaluations we can determine a number of

our important population statistics. These include the average, minimum, maximum and variance

in population fitness, both locally and globally. The number of events also indicates the population

size. By recording events indicating the fitness of schema shared between populations, we provide

migration information. The migration information includes, quality and volume information.

Information about the fitness of population schema only indicates the overall characteristics

of the schema. This information reveals very little about the actual form of the solution strings. To

reveal these features actual parameter values of the schema must be collected. Since solution schema

can contain many parameter values, this resolution can be prohibitive however, it is necessary for

a number of analysis problems.

10.9.1 Trace Volume. Realistic problems examined using genetic algorithms typically

result in long program execution times. A typical execution of the protein folding energy mini-

mization problem (6) could potentially consume hundreds of hours on a parallel machine. Since

the creation of each g,-neration represents a distinct point in the execution, we can considti the

program to be simply a series of generations. The uniformity of most implementations means that

each individual phase is representative of the next execution cycle. Thus, once the communications

and utilization have been examined for a particular phase we need only consider the contents of
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the different populations. During long executions of the genetic algorithm, the contents of the

population at a particular point in time are of limited value. Our main concern are the trends in

the composition of these populations. In this manner, we need only ever examine generations as

frequently as required, and in this way limit the tracing. For example, data from one generation

per 200 produced, may provide enough detail in executions that contain 100000 generations.

10.10 Implementation Strategy

The visualizations developed provide relevant data without imposing a significant overhead

on the program under examination. The final implementation allows flexibility in monitoring

levels from a single global best solution value, to an extensive list of population parameters. The

animations implemented here are based on the adaptive displays environment that was developed

as part of this research, outlined in Chapter IX. Unlike the animations produced for mission routing

and parallel discrete event simulations, these animations were produced without coding. This is

the major advantage of the adaptive displays environment. To produce these animations, a display

definition and event mapping file are developed. This file is then used by AAARF to create the

specified animation.

The following steps were utilized in generating animations within the adaptive display gen-

eration environment.

1. Determination of ezecution parameters required to be animated. This step involves determin-

ing animation objectives and specification of display requirements.

2. Event data required. Based on the parameters to be examined determine which event types

are required to produce this data.

3. Selection of data transforms. Select the predefined operations, listed in Section 9.2.5, to

specify the data transforms required to translate event data into the required execution pa-
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rameters. The requirements for event data scaling, linear/logarithmic and offset values are

also determined.

4. Display format. Based on animation requirements determine display format. In particular

examine the use of scrolling displays (windowed time interval) or snapshots (instantaneous

value animations). Also specify update methods, from Section 9.2.3. Updates can be based

on arrival of events or the passage of time.

5. Animation Objects. From the set of predefined graphical objects (Section 9.2.2) select specific

instances to compose the required display. Define the initial conditions for object parame-

ters and store in display format file, Appendix B. Assign specific animation parameters to

graphical object parameters. Involves assigning the operations selected at Step 3.

6. Event mapping. Based on the input event set, create a mapping of node & event pairs to effect

numbers (see Section 9.2.4). Produce a mapping of event to object parameters that require

input data from this event. These maps are created using the format shown in Appendix B.

They are stored with the object definitions in the display format file.

10.11 Data Collection for AAARF

Since this instrumentation was aimed at providing data input for the adaptive display envi-

ronment, the pre-formatted IE events are used. The important fields in this event are the event-type

and data-value. The command field is discussed in Section 9.2.1 and used to produce composite

events, a feature not used in this application. The event type is thus formatted as follows:

IE((int) EVENT-TYPE, (boolean) COMMAND, (float) data-value)

Based on this basic event type the following instrumentation was inserted into the GA pro-

gram. All data collection events are included in pgav2.c. A current instrumented implementation
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is available for both the iPSC/2 and iPSC/860, discussed in the AAARF Users' Guide (58). For

this particular application, a specifically tailored version of the PRASE data program is utilized.

This version, stored and compiled with the main PGA C files, is modified to record execution time

in milli seconds not micro seconds.

To provide maximum flexibility, it has been assumed that the GA program only provides an

evaluation of string fitness. From these events basic population parameters are determined, for

example variance, population size, etc. Interesting event NEW-GEN (int 99) signifies that a new

generation is about to be evaluated.

IE(NEWGEN, 1, NULL);

Interesting event FITNESS (int 100) is the base event value used to record the result of

string evaluations. The first evaluation result (float)performance is recorded as event 100 and each

following evaluation ;9 recorded as the next consecutive event number. The evaluation of the first

string from the next generation resets the event to (int 100).

IE(FITNESS + evaluation-count, 1, (float) performance);

To record the migrating schema the following event types are inserted. The BEST-POSITION

(int 299) event indicates the population position number of the migrating schema. The MIGRATE

(int 300) event records the fitness value of the migrating schema. If more than one migration is

performed per generation, the MIGRATE event marker is incremented in the same manner as the

FITNESS event.

,ESTPOSTION, 1, (float) (Best-guy));
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IE(MIGRATE + migrate.count, 1, (float) (New[Best_guyJ.Per f));

Instrumentation to record the actual schema requires significantly more data storage. How-

ever, when examining true population diversity and composition, this data is essential. The genetic

algorithm problem utilized for this study, protein folding (6), uses the binary string of the GA

to represent bond angles. As with most GA programs, the binary representation is decoded to

produce a vector of data values. These can be floating point numbers or integers. The instrumen-

tation system simply records the individual vector components as numbered events. In this way

the instrumentation is independent of string length. The following event type is utilized.

IE(SCHEMAVAL + string.postion, 1, (float) value);

This method is also applicable to recording directly the binary strings if required. The

SCHEMA-VAL event is defined as (int 500).

The PGA program utilized has the capability to calculate at run time, a number of population

statistics. These can be instrumented if required, but tend to make the animations too program

lependent. The standard set present here ensure that the instrumentation is compatible with a

range of application programs.

10.12 Application Specific AAARF Animation Displays

The following section outlines the individual displays developed and discusses their capabili-

ties. Each animation is specified by a display definition file. These files are contained in Appendix

C. The flexibility of the adaptable displays environment promotes unique variations of the basic

formats to meet specific animation objects. To use a particular animation, the relevant display

definition file name is simply entered into the control panel input field.
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Figure 45. Scrolling Specified Value Display (Minimum, Maximum, and Average Fitness)

10.12.1 Specified Value Display. The specified value display allows the user to depict

on both a static and scrolling bar graph, any interesting population parameters. For the scrolling

animation, the horizontal time scale is measured in generations (see Figure 45). The static bar

graph display shows the value of the specified parameter relative to each processing node. In this

case the processors form the horizontal axis (see Figure 46).

It is possible to instantiate as many of these displays as required, with each display depicting

any parameter of interest for any processor. Most displays allow more than one parameter to be

displayed at the same time. The following list contains the parameter available.

"* Average Fitness.

"* Variance in Fitness.

"• Max/Min Fitness.

"* Number of Mutations.
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"• Number of Crossovers.

"• Population size.

"• Number of migrations.

10.12.2 Parameter Matrix Display. The matrix representation provides a depiction of

interesting parameters relative to the processing elements. In this animation. the individual pro-

cessors are represented and the current value of a particular parameter of interest is displayed. It

is actually not necessary to depict all processors. By modifying the event map, statistics from mul-

tiple processors can be combined to produce an aggregate value. Tihe parameters depicted include

those listed in Section 10.12.1. The display includes color coding and bar graph representations

that allow multiple parameters to be examined simultaneously. This can be particularly useful to

depict variances and average values simultaneously. The displays can effectively depict over 1000

processors. The display is similar in format to the one shown in Figure 47 and includes an addi-
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M igration-Volume

Generation: 57

P56: 2 P57: 2 P58: 3 P59: 2 P60: 4 PSI: 3 P62: 7 P63: 4

P48:3 P49:3 P50:2 P51:2 P52:2 P53:2 P54:2 P55:2

P40:4 P41:4 P42:2 P43:4 P44:3 P45:2 P46:3 P47:3

P32:2 P33:4 P34:3 P35:4 P36:1 P37:4 P38:4 P39:3

P24:2 P25:2 P26:2 P27:3 P28:3 P29:4 P30:8 P31:4

P16:3 P17:3 P18:3 P19:3 P20:4 P21:3 P22:2 P23:4

P-8:3 P-9:3 P10:2 P11:4 P12:4 P13:2 P14:3 P15:3

P-0:4 P-1:3 P-2:2 P-3:4 P-4:3 P-5:2 P-6:1 P-7:3

Figure 47. Migration Display by Processor (Total and Last Distributions)

tional bar above the processor identification number to indicate the additional parameter. Once

again, an unlimited number of variations using the same basic displays definition file are possible.

10.12.3 Migration Display. This animation is an adaption of the matrix display that

depicts the sharing of schema between populations. In this animation the volume, fitness, and

other statistics related to migrating schema are shown. The matrix display represents the interac-

tions between population. In a cellular or global population model, the animation can depict the

interactions between sections of the distributed population. An example of this display is shown

in Figure 47. In this particular animation the values on the nodes represent the number of schema

that have been distributed by that node, or cluster of nodes. during execution. The presence of

a bar tinder the processor indicates that on the last sharing opportunity, this node distributed at

least on schema. The GA program was configured in this case to distribute one schema every ten

generations if the schema was better than any sent out by that node so far.
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10.13 User Interaction

Genetic algorithms are well suited to tackling problems of large dimensionality. For these

problems, computation time can typically increase exponentially. Even on massively parallel sys-

tems only a small fraction of the total search space can be examined in a reasonable time period.

For current AFIT research into protein folding (6) this can easily amount to hundreds of hours of

system time. The animations developed to date have focused on simply depicting the execution

of the GA program. The real-time connection, possible with AAARF, could permit user interac-

tion with the algorithm. By analyzing parameters such as solution variance, average fitness and

population distribution, the user can determine how the search is progressing. This analysis could

highlight populations that have converged on solutions or particular schema segments that appear

to fit problem domain criteria. For example, in the protein folding problem, sections of schema

could reflect meaningful properties in the solution space confirming particular sections of the final

solution. Based on this information the user could actually modify program parameters during

execution to produce muperior results. The following sections outline this approach in more detail.

10.13.1 Closing the Loop. Once characteristics of the GA program's execution have

been determined, the user could then inject into the executing program additional changes. This

could be as simple as increasing the mutation rate to increase diversity in populations that have

converged. Totally new populations could be generated to replace ones that are not producing

promising solutions. Reductions in the mutation rate could be initiated to examine a local area in

the search space more thoroughly. Solutions could be examined to determine important components

of promising solutions and this genetic material selectively distributed across populations.

The system could also be configured to monitor particular aspects of the executing GA au-

tomatically. This could then be used to alert the operator to initiate changes. Experimentation

with this higher level interaction could lead to the generation of rules that could automatically

adapt the search process. On truly long executions, it is important to ensure maximum program
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performance. This constant monitoring and adaption can be promoted by the integration of real

time visualization systems.

10.13.2 User Interface. The user interaction display would ideally be suited to imple-

mentations based on the matrix display, the base configuration depicting the variance and average

value of population fitness. Attached to each processor display would be a menu containing the

current GA parameters applicable to the population on that node. This would include:

"* Mutation probability.

"* Crossover rate.

"* Migration criteria.

In addition to allowing the user to examine these values, they could be adapted during

execution. This could be further extended to allow more advanced manipulation of the executing

algorithm. In particular, destruction or creation of completely new populations would be possible.

10.14 Summary

Results on early use indicate that the animations provide valutable insight into the execution

of parallel genetic algorithms. The number of interesting characteristics for more advanced GA

implementations provides a limitless range of display formats. The AAARF system has proven

that valuable formats can be generated relatively easily using the adaptable animation builder

discussed in Chapter IX. Without this approach, significant coding would have been required for

each application specific display. All these displays were developed without a single line of additional

code. While the prototype implementation of the adaptive animation environment provides the

basic functionality, a suitable user interface would greatly enhance the process of creating the

display format file. This has not however, limited the capability of the resultant animation displays.
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The possibility of user input into the executing GA, based on information gained from vi-

sualizations, could provide a focus of further research activity. This particular aspect could be

generalized to cover other algorithms, particularly intensive searches demanded by optimization

problems. User interaction is of particular interest since it is not currently included in the major

animation systems.
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XI. Conclusions and Recommendations

This chapter presents conclusions regarding the effectiveness of the enhancements made to

AAARF as a result of this research. Recommendations for future modifications to AAARF and

the development of a new AAARF implementation are also presented.

11.1 Conclusions

This research has focused on a number of elements vital to parallel algorithm animation. The

primary research objective of providing improved animation support for AFIT research projects has

been met. This has been achieved by integrating additional animations into the AAARF system and

by development of an adaptive display building environment. Detailed analysis of the limitations

inherent in current animations systems revealed significant factors that influence animation system

design. These factors, listed below, have not been successfully addressed by other systems.

"* Animation of system level events is too restrictive. This is due to limitations of trace volume

and the resulting program perturbations.

"* Animations of algorithm data structures are essential. Animations based only on communi-

cation events do not effectively depict many desired aspects of algorithm execution.

"* The capability to depict significant periods of program execution is required. Many algorithm

modifications effect execution parameters only when observed over significant periods of pro-

gram execution.

"* Animation of abstract program data requires flexible display formats. The animation system

must be capable of providing animations that relate directly to user identifiable behavior.

This requirement leads to user composible display formats.

"* Utilization is not simply processor idle time based on message passing. Parallel algorithm

implementations can often require additional processing not included in serial implementa-
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tions, for example dynamic load balancing. These types of overheads directly effect system

utilization statistics and must be included.

These factors lead to the design and development of enhancements to the AAARF system,

listed below. The enhancements represent additional animation classes that directly address the

limitations listed previously. The development is compatible with the object based implementation

of AAARF and the user interface consistent with previous capabilities. The animations were

extensively tested using current versions of AFIT research applications. This testing included

student usage of the new animations for laboratory experimentation. In addition, results gained

from program analysis using the new AAARF animations have already lead to enhancement of the

target applications.

"* Application specific displays for parallel discrete event simulations, multi-criteria mission

routing A* search, and genetic algorithms.

"* Improvements to general system level animations.

"* The development of a trace file statistical analysis tool.

"* Implementation of an adaptive system for building application specific animations has been

implemented.

From a usability perspective, the AAARF system was widely used by students not associated

with its development. While the majority of the instrumentation work was done by the author.

software from six other students was instrumented with success.

11.1.1 Trace Data Collection and its Impact on Animation Systems. A detailed analysis

of the effects of trace data collection was completed including a quantification of the PRASE data

collection system overhead. This investigation revealed that the current system level animations.

are ineffective wl, m applied to the current generation of massively parallel computer systems. This

problem is a direct result of the trace data volume required to generate system level animations.
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This effectively limits this level of observation to examining very brief periods of execution. It can be

concluded that trace volume and the ever increasing size of parallel processing systems require that

animation systems' data requirements need to be reduced by many orders of magnitude. Simply

providing scalable displays is of little benefit, since the trace data volume problem remains. Thus,

visualization should focus research on animating higher level algorithm information. A model for

future animation system development at AFIT is proposed, based on this principle. The model

includes the following important characteristics:

"* Architecturally independent self defining event tracing.

"* Top down trace resolution.

"* User defined and configurable event filtering.

"* Integrated multidimensional data visualizer.

"* User specified interactive graphical display builder.

"* Pseudo real time display presentation.

"* Pseudo real time user manipulation of algorithm.

- event tracing level.

- data structure values.

"* Animations built on higher performance graphical workstations (SGI etc).

Trace data standardization is still an open question for the scientific community at large.

However, Intel's adoption of the Pablo (62) self defining event tracing provides a focus for continued

AFIT research. AFIT's long association with the Intel product line is continuing with the Intel

Paragon system in the near future. The adoption of the Pablo evený tracing as a standard shall

not restrict research on other systems such as the CM-5 (81) since it is currently available for this

and many other system types.
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11.1.2 The Adaptive Display Generation Environment. The most promising result from

this research is the effective use of adaptive application specific display. When applied at the ap-

propriate level, they provided greater insight than generic animations. The ability to define display

formats for a particular application without resoiLig Lu coding is a significant improvement over

other systems. The generalized mapping of events to any parameter of a graphical object provided

virtually unlimited scope for animation generation. This adaptability not only ensures that the

system can provide the required animations, but also enhances machine and algorithm indepen-

dence. The utility of this approach was clearly demonstrated with the development of displays for

parallel genetic algorithms. The simplification of event types also appears particularly beneficial

with the elimination of instrumentation complexities introduced by more complex structures.

The ability to produce arbitrary animations relatively simply promotes both the education and

program development capabilities of any parallel algorithm visualization system, such as AAARF.

The flexibility in display formats addresses the problem of producing useful analysis animation

for program development. In addition, the event mapping process effectively deals with defining

displays for massively parallel systems. This flexibility also introduces the opportunity to pro-

duce animations that demonstrate specific algorithm behavior. By allowing displays that combine

depictions of algorithm data and system level behavior, superior instructional animation can be

produced. This, combined with a realistic real-time data requirement, provides an effective system

for support of parallel program development.

The actual software developed for the adaptive display environment was designed to be inde-

pendent of the AAARF system. The additional modules included into AAARF require only trivial

data from the remainder of the system. This requirement is limited to event data, the current

animation time, and display canvas pointers. The modular design of these additions are ideally

suited for inclusion in other animation systems.
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11.2 Recommendations

The following recommendations are made based on the results of this research and a compre-

hensive review of other state-of-the-art parallel animation systems. In defining these recommenda-

tions, the guiding principles have been:

1. Providing future search activity that ensures AFIT's algorithm research is relevant to the

general scientific community.

2. Research in this area should leverage the technology developed with the AAARF system,

other research activities, and the best commercially available products.

3. The system of choice is the Intel product line, and in particular, the Paragon (39) system.

However, portability is vital to allow comparison with execution on other systems such as the

CM-5 (81).

The recommendations can be divided into three distinct areas and the following discussion

reflects this organization.

11.2.1 The Current AAARF System. The following recommendations relate directly to

the current AAARF implementation.

1. Further development on the current system software should be discontinued. The system is

too restrictive for serious future development activity for massively parallel computers.

2. AAARF should continue to be used for animation of the algorithm classes for which appli-

cation specific displays have been developed. These displays are not readily found in other

systems and the development effort required to regenerate them would be substantial. These

animations provide tremendous insight into the execution of parallel programs and are ideal

for educational objectives.
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3. AFIT should adopt the Intel ParAide (27) development and visualization environment for

system level animation activities. Vendor support and development would ensure that other

AFIT researchers are using the most reliable animation system available. Intel's goal of

including the complete Pablo (62) animation environment, a leading edge research project at

the University of Illinois, should ensure that it is also the most capable system. The results

obtained by AFIT researchers on this system would then be compatible with systems used

by other researchers. The most compelling reason for this recommendation is that this level

of animation, based on this research, appears unable to address the scalability problems of

massively parallel systems.

4. The serial animation component of AAARF should become a separate application program.

This component of AAARF is relevant irrespective of future developments. It will remain an

important teaching aid for AFIT algorithm based classes.

11.2.2 The Nezt Generation of AAARF. A new animation tool must be developed based

on the outline provided in Chapter VIII. This will effectively constitute a second generation of the

AAARF system, not an incremental improvement. Only these steps will ensure that AFIT parallel

algorithm animation remains relevant in the future.

1. The new system should be developed as an extension of the Intel ParAide tool (27) . This

will ensure maximum leverage of capabilities from the current generation of systems. One

of the most disappointing aspects of AAARF has been its inability to utilize the capabilities

of other systems, such as display formats. Currently ParAide does not support application

specific animations. The capabilities of the adaptable animation environment, discussed in

Chapter IX, would significantly enhance the ParAide. The modular design of ParAide will

allow development without significant interaction with Intel.

2. The system should utilize the Pablo event tracing technique. The reasons for this are clearly

discussed in section (55). The most effective approach here would be to define an equivalent to
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the AAARF IEO event type. The work on adaptive display for application specific animations

would then be directly applicable.

3. Low level event tracing should not be considered part of future AFIT animation research.

This section of the animation task should be left to the ParAide (62) system. Future work in

this area will increasingly require operation system modification and joint development with

vendors, a difficult path for AFIT to pursue. From this research it would also appear that

this level of observation is not applicable to the majority of AFIT's animation requirement,.

4. Research should focus on the development of an interactive animation generation system for

high level algorithm displays. User configurability and menu based display format generation

provides the most promising field of future AFIT research. This was clearly demonstrated

by the adaptable animation environment developed as part of this research (see Chapter IX).

Higher level algorithm animation provides the only way of obtaining the orders of magnitude

reduction in trace data volume.

5. Research activity should be moved to a High Speed Graphics System. The display capabili-

ties of the Sun workstation significantly limited the animation speed possible in the current

AAARF system. To ensure that this problem is minimized in the next system, other graphics

platforms, such as the Silicon Graphics systems, should be examined.

11.3 Impact on General Parallel Research at AFIT

Architectural independence for parallel software is vital if previously developed software is to

be reused. Much could be gained by utilizing one of the many portable communication libraries,

ie PICL (23). While a small overhead penalty is incurred, this is more than compensated for by

the ability to obtain results on other architecture and eliminate version proliferation of research

software. This type of decision obviously impacts the development of animation tools.
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Appendixc A. Data Collection Trace Formats

A.1 Trace File formats

The specification of the trace file format greatly influences the overall animation system. This

appendix provides a brief overview of the major trace formats of interest to this research; PRASE

(42), Pablo (62), and PICL (23). These three systems all represent different approaches to trace

file format.

A.2 The PRASE Trace File Format

PRASE uses two trace files to record execution data. The first records system level events

and program trace markers consisting of two to three data values (trace.dat). The second trace

file is used for storage of large data vectors (algtrace.dat). The more important file is the trace.dat

file, which is the only one that provides event buffering and thus can be used for accurate event

tracing. Without at least limited event buffering, execution traces become meaningless.

The PRASE trace.dat file uses a fixed size event record regardless of what data actually is

to be recorded. This allows for ease of implementation but significantly increases trace file size.

The format was originally chosen for compatibility reasons which have long since passed (42). The

PRASE event record format is shown below:

typedef struct

char record'type[6];

long recording'node;

long recording'pid;

unsigned long begin'time;

unsigned long end'time;

union

struct
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long channel'num;

long message'type;

long message'size;

long message'count;

long addressed'node;

long addressed'pid;

long position'marker;

message;

char char'marker[CHAR'MARK'LENGTH];

double double'marker;

float float'marker;

iut int'marker;

long long'marker;

short short'marker;

data;

)RECORD;

As can be clearly seen from the event typedef, even if a single integer value and time stamp

are recorded, a significant amount of empty data fields are stored in the event trace. One further

disadvantage of the PRASE trace file format is that it is stored in binary format. While this reduces

the total file size, it makes it impossible to examine using unix commands such as grep. As a result,

an ASCII duplicate is often made to allow examination of the file.

A.2.1 Event Requirements for the Adaptive Display Environment. The work on adaptive

display bases all its event requirements on a time stamped node number, integer, and float data

tuple IX. While the current implementation uses the PRASE event records, the remaining data

fields are not used. This is not the case for other AAARF animations. Thus it would be possible

to reduce the PRASE record format if compatibility with previous research was not required. An

example format would be:

typedef struct
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long recording'node;

long recording'pid;

unsigned loug time;

long event type;

int command'marker;

float float'marker;

)RECORD;

Rather than use complex event types the command-marker allows events to be chained to-

gether. Currently all data values recorded by the animation system are converted to float type.

While this apprc.ch does not allow text strings to be recorded, it could be added if required.

The current adaptive display implementation allows the evenL types to be mapped to text message

objects and thus any textual messages can be generated in this manner.

A.3 The PICL Trace Data File Format

The PICL instrumentation system takes a similar approach to PRASE. All events are strongly

typed with a specified format, however, the implementation does not require unused data fields.

PICL uses an ASCII text file as the storage format and writes the data directly to this file. The

data is encoded as one of a number of event types and occupies a single line in the trace file. The

trace file is then read as a character string, line by line, and the first integer on each line represents

the format number of that event. The advantage of this approach is that an event of irregular size

can be recorded. However, the user is restricted to predefined event formats. The following is a

representative section of a PICL trace file and its translated meaning:

4 0 489 47 15 30032 1

1104894700

4 0 491 17 49 30032 1

** Which translates to:

send clock at 0489 node 47 to node 15 type 30032 Ith 1

compstats clock at 0489 node 47 idle 0 0
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send clock at 0491 node 17 to node 49 type 30032 Ith I

While the text file format is less compact than a binary form, the use of variable sized event

messages actually provides more compact results. The format is also particularly suitable for

browsing and analysis outside the animation environment. The only real limitation here is that the

user is restricted to predefined event formats.

A-4 The Pablo Trace Data Format

Pablo represents one of the most elaborate instrumentation system currently available. It

allows the user to specify event formats and provides buffering, at the nodes, for these irregular

sized events. The central component is the Self-Describing Data Format (SDDF) which is a trace

description language that specifies both the structure of data records and data record instances.

The format supports the definition of records that contain scalars and arrays of the base types found

in most programming languages. In addition, SDDF supports the definition of multi-dimensional

arrays whose sizes can differ in each recording instance. The Pablo system avoids the limitations

associated with fixed event formats.

Pablo's SDDF meta-format also eliminates another problem by supporting both ASCII and

binary versions of the trace file. Tools are provided to convert from one format to another and the

visualization tools can accept either. The following is an example of an SDDF event definition.

Note the similarities with a C programming language structure definition.

#113:

//"description" "Loop Entry Trace Record"

"Loop Entry Trace" (

// "Time" "Timestamp"

int "Timestamp"

// "Seconds" "Floating Point Timestamp"

double "Seconds";

//-1D" "Event ID"
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int "Event Identifier";

// "Node" "Processor Number"

int "Processor Number";

// "Loop" "Loop Index"

int "Loop Index";

// "Byte" "Source Byte Offset"

int "Source Byte";

// "Line" "Source Line Number"

int "Source Line";

The Pablo system is supplied a range of predefined event types to aid users of the system

with program instrumentation. It is obvious from the flexibility provided that virtually any trace

requirement can be met with the Pablo system. It would be particularly beneficial in providing

events for the adaptive display environment developed in Chapter IX. In this instance only the

definition of a single event type would be required. It will be interesting to see if users of the system

take full advantage of complex event definitions, due to the added effort inv ,Ived. It is likely that

the majority of users will make do with the pre-specified event types, even if they are inappropriate.
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Appendix B. Display Definition File Format

The Display Format is used to specify a set of animation displa. i. They can contain defi-

nitions for up to four display formats. Each frame is specified using the same basic format which

contains the following items:

"* Frame Definition line.

"• Node & Event to Effect mapping table.

"* Effect to Object, Parameter, and Operation map.

"* Object Definition (Including Scale Factor).

To construct a file, the user system inserts the appropriate mapping and other parameters

into the template shown below. Fields such as the event map, effect map, and scale factors can

contain variable numbers of entries and are terminated with a negative integer. The number of

objects contained in a particular frame are also user definable and the system continues to read

objects for the current frame until an invalid object is read. In this case, the object is specified to

be invalid if a NULL valid is read for the object VALID parameter. After reading an invalid object,

the system expects to find a new frame definition. This process stops when an invalid frame is read,

specified in the same method used for objects. A detailed discussion of this format is contained in

the AAARF User's Guide (58).

/* A Display Specification Note:

/* The position and line spacing in the file is important.

/************* FRAME ONE DATA *************************/ Must Be on Line 3.

VALID UPDATE*STYLE SCROLL'WIDTH SAMPLE'PERIOD UPDATE'EFFECT CLEAR'DISPLAY DISPLAY*NAME

#### NODE EVENT EFFECT

NODE EVENT'TYPE EFFECT

NODE EVENT'TYPE EFFECT

NODE EVENT'TYPE EFFECT

-1 -1 -1
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#### EFFECT OBJECT PARAMETER OPERATION

EFFECT OBJECT PARAMETER OPERATION

EFFECT OBJECT PARAMETER OPERATION

EFFECT OBJECT PARAMETER OPERATION

-1 -1 -1

# Object 0 #

VALID OBJECT'TYPE POSITION'X1 POSITION'Y1 COLOR UPDATED ACTIVE

DOT'SIZE RECT'HEIGHT STRING VALUE TEXT'STRING DEGREES POSITION'X2 POSITION*Y2 RECT'WIDTH

Scale Factors

PARAMETER SCALE'FACTOR OFFSET LOG'SCALING

-I -I

# Object 0 #

VALID OBJECT'TYPE POSITION'XI POSITION'Yl COLOR UPDATED ACTIVE

DOT'SIZE RECT'HEIGHT STRINGVALUE TEXT'STRING DEGREES POSITION'X2 POSITION'Y2 RECTWIDTH

Scale Factors

PARAMETER SCALE'FACTOR OFFSET LOG'SCALING

-1 -1

# Object #

0

*/****************~ FRAME TWO DATA ***********************

VALID UPDATE'STYLE SCROLL*WIDTH SAMPLE*PERIOD UPDATE'EFFECT CLEAR'DISPLAY DISPLAYNAME

#### NODE EVENT EFFECT

NODE EVENT'TYPE EFFECT

NODE EVENT'TYPE EFFECT

NODE EVENT'TYPE EFFECT

-1 -1 -1

#### EFFECT OBJECT PARAMETER OPERATION

EFFECT OBJECT PARAMETER OPERATION

EFFECT OBJECT PARAMETER OPERATION

EFFECT OBJECT PARAMETER OPERATION

-1 -1 -1

# Object 0 #

VALID OBJECT'TYPE POSITION'X1 POSITION'Y1 COLOR UPDATED ACTIVE

DOT'SIZE RECT'HEIGHT STRING'VALUE TEXT'STRING DEGREES POSITION'X2 POSITION'Y2 RECT'WIDTH

Scale Factors

PARAMETER SCALE'FACTOR OFFSET LOG'SCALING

-I -1

# Object 0 #

VALID OBJECT'TYPR POSITION'XI POSITION'YI COLOR UPDATED ACTIVE
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DOT'SIZE RECT'HEIGHT STRING'VALUE TEXT'STRING DEGREES POSITION'X2 POSITION*Y2 RECT'WIDTH

Scale Factors

PARAMETER SCALE'FACTOR OFFSET LOG'SCALWNG

-1 -1

# Object # 0/
/4******* ...******** * INVALID FRAME************************.

0

Example specification files are contained in Appendix C. These files were used to generate !,4
some of the displays shown in Chapter X.
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Appendix C. Definition Files for Adaptive Displays
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C. I Display Definition File for Process Timing Display (Figure 11)

A Display Specification Process Timing Event (99) Set Event and Node ID.

The position and line spacing in the file is important.

*************** FRAME DATA **********************/

1 8 10 0 0 1 Phase'Execution'Time

#### NODE EVENT EFFECT

6 990

-1 -1 -1

#### EFFECT OBJECT PARAMETER OPERATION

0098

0178

0293

-1 -1 -1

# Object 0 #

1 3 370 500 1 1 1

0 0 0 Interval: 0 0 0 0

Scale Factors

9100

-1 -1

# Object 1 #

1 2492 1 70 11

0 0 0 null 0 0 0 7

Scale Factors

7 2630 0 0

-1 -1

# Object 2 #

1 3 270 500 1 1 1

0 0 0 Occurence: 0 0 0 0

Scale Factors

9100

-1 -1

# Object 3 #

1 3 2450 1 1 1

0 5 100 Scale: 0 0 0 19

Scale Factors

-1 -1

# Object 4#
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1 2 490 1 1 1 1

0 3 0 null 0 2 2 I0

Scale Factors

3100

-1 -1

# Object ****************** LABELS *

1 33 38 1 1 1

002 + 0000

Scale Factors

-1 -1

# Object #

1 3 3 76 1 1 1

004+0000

Scale Factors

-1 -1

# Object #

1 3 3 115 1 1 1

006 +0000

Scale Factors

-1 -1

# Object #

1 3 3 153 1 1 1

008+0000

Scale Factors

-1 -1

# Object #

1 3 3 192 1 1 1

0 0 10 + 0 0 0 0

Scale Factors

-1 -1

# Object #

1 3 3 230 1 1 1

0 0 12 + 00 0 0

Scale Factors

-1 -340

# Object #

1 3 3 270 1 1 1

0 0 14 + 0 0 0 0

Scale Factors
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-1 -1

# Object #

1 3 3 308 1 1 1

00 16 + 0000

Scale Factors

-1 -1

# Object #

1 3 3 346 1 1 1

0 0 18+ 0000

Scale Factors

-1 -1

# Object #

1 3 3 384 1 1 1

0 0 20 + 0 0 0 0

Scale Factors

-1 -1

# Object #

1 3 3 423 1 1 1

0 0 22 + 0 0 0 0

Scale Factors

-1 -1

# Object * LINES *

1 5 492 38 1 1 1

0 0 0 null 0 494 38 0

Scale Factors

-1 -1

# Object #

1 5492 76 1 1 1

0 0 0 null 0 494 76 0

Scale Factors

-1 -1

# Object #

1 5 492 115 1 1 1

0 0 0 null 0 494 115 0

Scale Factors

-1 -1

# Object #

1 5 492 153 1 1 1

0 0 0 null 0 494 153 0
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Scale Factors

-1 -1

#Object #

1 5 492 192 1 1 1

0 0 0 null 0 494 192 0

Scale Factors

-1 -1

# Object #

1 5 492 230 1 1 1

0 0 0 null 0 494 230 0

Scale Factors

-1 -1

# Object #

1 5 492 270 1 1 1

0 0 0 null 0 494 270 0

Scale Factors

-1 -1

# Object #

1 5 492 308 1 1 1

0 0 0 null 0 494 308 0

Scale Factors

-1 -1

# Object #

1 5 492 346 1 1 1

0 0 0 null 0 494 346 0

Scale Factors

-1 -1

# Object #

1 5 492 384 1 1 1

0 0 0 null 0 494 384 0

Scale Factors

-1 -1

# Object #

1 5 492 423 1 1 1

0 0 0 null 0 494 423 0

Scale Factors

-1 -1

# Object #

0
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**S**S*S****SS**********S* FIRAME DATA ************************/

0
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C.2 Display Definition File for Scrolling Specified Value Display(Figure 45)

A Display Specification Note: Event (99) Set Event and Node ID.

The position and line spacing in the file is important.

/****************** FRAME DATA ************************

1 8 20 0 55 0 Specified'Value Population Fitness

#### NODE EVENT EFFECT

0 99 55

0 100 0

0 101 1

O 102 2

0 103 3

0 104 4

0 105 5

0 106 6

0 107 7

0 108 8

0 109 9

0 110 10

0 111 11

0 112 12

0 113 13

0 114 14

0 115 15

0 116 16

0 117 17

0 118 18

0 119 19

0 120 20

0 121 21

0 122 22

0 123 23

0 124 24

0 125 25

0 126 26

0 127 27

0 128 28

0 129 29
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0 130 30

0 131 31

0 132 32

0 133 33

0 134 34

0 135 35

0 13i 36

0 137 37

0 138 38

0 139 39

0 140 40

0 141 41

0 142 42

0 143 43

0 144 44

0 145 45

0 148 48

0 147 47

0 148 48

0 14949

0 150 50

-1 -1 -1

#### EFFECT OBJECT PARAMETER OPERATION

0031

1131

2231

3331

4431

5531

8631

7731

8831

9931

10 10 3 1

11 11 3 1

12 12 3 1

13 13 3 1

14 14 3 1

15 5 3 1
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6631

7 7 31

8 8 31

9931

10 10 3 1

# Object 1#

1 1 485 50 70 1 1

4 0 0 null 0 2 2 0

Scale Factors

3 130 0 1

-1 -1

# Object 3 #

1 3 270 500 1 1 1

0 0 0 Generation: 0 0 0 0

Scale Factors

9100

-1 -1

# Object #

1 2 480 36 1 1 1

0 5 0 null 0 0 0 19

Scale Factors

-1 -1

# Object #

1 3 2 450 1 1 1

0 5 1 Scale: 0 0 0 19

Scale Factors

-1 -1

# Object * LINES *

1 5 482 38 1 1 1

0 0 0 null 0 484 38 0

Scale Factors

-1 -1

# Object #

1 5 482 76 1 1 1

0 0 0 null 0 484 78 0

Scale Factors

-1 -1

# Object #

1 5 482 115 1 1 1
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0 0 0 null 0 484 115 0

Scale Factors

-1 -1

# Object #

1 5 482 153 1 1 1

0 0 0 null 0 484 153 0

Scale Factors

-1 -1

# Object #

1 5 482 192 1 1 1

o 0 0 null 0 484 192 0

Scale Factors

-1 -1

# Object #

1 5 482 230 1 1 1

0 0 0 null 0 484 230 0

Scale Factors

-1 -1

# Object #

1 5 482 270 1 1 1

0 0 0 null 0 484 270 0

Scale Factors

-1 -1

# Object #

1 5 482 308 1 1 1

0 0 0 null 0 484 308 0

Scale Factors

-1 -1

# Object #

1 5 482 346 1 1 1

0 0 0 null 0 484 346 0

Scale Factors

-1 -1

# Object #

1 5 482 384 1 1 1

0 0 0 null 0 484 384 0

Scale Factors

-1 -1

# Object #
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1 5 482 423 1 1 1

0 0 0 null 0 484 423 0

Scale Factors

-1 -1

# Object ***************** LABELS 5************************

1 3 3 38 1 1 1

0o00 +,0000

Scale Factors

-1 -1

# Object #

1 3 3 76 1 1 1

002 +0000

Scale Factors

-1 -1

# Object #

1 3 3 115 1 1 1

004 + 0000

Scale Factors

-1 -1

# Object #

1 3 3 153 1 1 1

006+0000

Scale Factors

-1 -1

# Object #

1 3 3 192 1 1 1

008+0000

Scale Factors

-1 -1

# Object #

1 3 3 230 1 1 1

0 0 10 + 00 0 0

Scale Factors

-1 -340

# Object #

1 3 3 270 1 1 1

0 0 12 + 0 0 0 0

Scale Factors

-1 -1
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# Object #

1 3 3 308 1 1 1

00 14 + 0 0 0 0

Scale Factors

-1 -1

# Object #

1 3 3 346 1 1 1

0 0 16 + 0000

Scale Factors

-1 -1

# Object #

1 3 3 384 1 1 1

0 0 18 + 0 0 0 0

Scale Factors

-1 -1

# Object #

1 3 3 423 1 1 1

0 0 20 + 0000

Scale Factors

-1 -1

# Object #

0

/*********************S**** FRAME DATA

0
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